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This annual report summarizes the work I have done so far
during my tenure at ARL as a Distinguished Postdoctoral Fellow
under Contract no. W911NF-19-2-0186 in the Battery Sciences
Branch. My work so far has centered on learning the theory
and tools of my new field and conducting preliminary computa-
tional studies of aqueous zinc battery electrolytes. I first present
my initial efforts to develop machine-learning (ML) models to
accelerate molecular dynamics (MD) simulations of aqueous
Li2ZnCl4 ·x H2O and Li2MnCl4 ·x H2O electrolytes. These initial
exploratory ML models predicted unphysical behavior and pro-
duced unstable MD simulations. I then discuss how I simplified
my approach to focus on models of bulk water in order to better
diagnose issues with the ML training procedures. I share initial
results from my studies of bulk water and investigate additional
families of ML models that lead to more stable MD simula-
tions. My ultimate goal is to develop a reproducible protocol for
training ML models that function as fast and generalizable inter-
atomic potentials for electrolyte systems like Li2MnCl4 ·x H2O,
or those with even more complex salt compositions.

1 Efforts during my first year of tenure

1.1 Background

Establishing domestic energy security and maintaining the readi-
ness posture of our armed forces demand batteries with high
energy densities, long cycling lifetimes, and high electrochemi-
cal stability. Lithium-ion batteries (LIBs) are widely adopted for
their excellent energy and power density, but remain susceptible
to anode–cathode dendrite formation, fires and explosions due
to combustion of organic electrolytes, poor low-temperature
performance, and other safety and efficacy concerns.1,2 Addi-
tionally, there are geopolitical concerns affecting the long-term
Li, Co, and Ni supply chains as well as economic and lifecycle
considerations of extracting and refining Li.3,4 These challenges
motivate investigation of beyond-Li battery chemistries and
aqueous-phase electrolytes.

One such family of battery chemistries involves pairing Zn
electrodes with an aqueous electrolyte. Zn is favored for its
high levels of mine production and reserves compared to Li,
Pt-group metals, and other rare earth metals, as well as its high
volumetric energy density.5–7 On a Pourbaix diagram, Zn/Zn2+

plating/stripping processes at approximately −0.76 V vs. SHE
are stable in acidic conditions (Figure 1(a)), which promotes
the stability of the Zn anode during repeated charge cycling.

However, some issues complicate the development of aqueous
electrolytes for Zn anodes. One primary issue is that the applied
potential range favoring Zn/Zn2+ plating/stripping coincides
with the potential range for the competing hydrogen evolution

reaction (HER). Zn2+ within a [Zn(OH2)6]
2+ ion is reduced via

charge transfer through the water ligands, which destabilizes
O–H bonds and encourages hydrolysis.8–10 Thus, water is not a
stable coordinating ligand for aqueous Zn2+ electrolytes. Addi-
tionally, in alkaline conditions, surface Zn that oxidizes to ZnO
does not properly passivate the electrode surface, meaning that
a ZnO surface–electrolyte interphase (SEI) may not protect the
anode surface from undesired stripping at more positive cell
potentials. Designing a SEI that adds reasonably low resistivity
to the circuit, is stable in aqueous solution at the operating
conditions of the battery and over large temperature ranges,
and has a reduction potential that prevents water ligands from
solvating Zn is an ongoing challenge.11,12

One approach to address the issue of water decomposition
prevalent around Zn2+ ions issues is to add supporting salts to
form a concentrated electrolyte. Such salts, especially chloride
salts, change the coordination environment around Zn2+ by
excluding water as a ligand, which lowers the rate of HER and
thus stabilizes water in the electrolyte. Addition of supporting
salts can also lower the minimum temperature at which the
electrolyte can operate by preferentially coordinating free wa-
ter molecules, disrupting the hydrogen bonding network and
suppressing crystallization. For example, adding LiCl to an
aqueous ZnCl2 electrolyte, so as to maintain a Li2ZnCl4 ·9H2O
composition, was shown to maintain reversible Zn/Zn2+ plat-
ing/stripping and stable cycling at 0.4 mA cm−2 between−60 ◦C
and +80 ◦C.1 The increased stability of water in the electrolyte
is attributed to chloride ions, which displace water ligands in
the Zn2+ solvation shells. Additionally, supporting salts contain-
ing bis(trifluoromethanesulfonyl)imide (TFSI) can also increase
reversibility of a Zn-ion battery. An aqueous Zn electrolyte
supported with 1 m Zn(TFSI)2 and 20 m LiTFSI was shown
to enable reversibility in a Zn/Zn2+ battery with LiMn2O4 or
open-air cathodes, as well as reduced Zn dendrite formation.10

Using salt additives to form high-density ionic electrolytes seems
important to making Zn-ion batteries feasible.

Another challenge facing Zn-ion batteries is the interplay
of electrolyte and cathode stability. In a Li2ZnCl4 ·x H2O elec-
trolyte in acidic conditions, Cl has an oxidation potential of
approximately +1 V vs. SHE to form ClO2(s) + LiClO4(s), en-
training all of the free Cl– from solution. This is very close to the
potential at which Li forms LiClO4(s) while leaving some Cl–

free, as part of the cathode reaction in an open-air cell. Overcon-
sumption of free Cl– at applied potentials that are too positive
could again promote parasitic HER among the water molecules
in the electrolyte, which is already a competing reaction at the
pH and applied potential conditions favorable for Zn/Zn2+ plat-
ing/stripping. This motivates the search for cathode materials
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which support charge transfer without causing the oxidation or
reduction of other spectator ions in the electrolyte.

One promising class of such materials are multivalent Mn
compounds, which can potentially undergo a dissolution–
precipitation process in response to charge transfer. In particular,
various polymorphs of MnO2 have been studied as a versatile
cathode material for Zn-ion batteries.15–19 Mn exhibits a wide
range of oxidation states, with Mn oxides containing Mn in every
oxidation state from+2 to+7.20 Thus, in an aqueous electrolyte,
it may be possible for cathodic charge transfer to involve just
the interconversion of different Mn oxide species without also
impacting the oxidation state of Cl– ions. A computed Pourbaix
diagram13,14 of Li2MnCl4 at pH= 6 and ion concentrations of
10−2 M demonstrates this idea (Figure 1(b)). Moving upward
from the large Mn2+ + Li+ + Cl– region to areas of the map
at higher applied potentials, the system goes through both a
Mn2O3(s)+ Li+ +Cl– phase (with Mn in the +3 oxidation state)
and then a MnO2(s) + Li+ + Cl– phase (with Mn in the +4 oxi-
dation state) before finally reaching the MnO2(s) + LiClO4(s) +
Cl– phase that starts to remove Cl– ions from solution at ap-
proximately +0.9 V vs. SHE. On the corresponding Pourbaix
diagram for Li2ZnCl4 (Figure 1(a)) at pH= 6, the Zn2+ + Li+ +
Cl– phase ends at an applied potential of +0.9 V vs. SHE, above
which the system immediately begins precipitating Cl– out of
solution to form the Zn2+ + LiClO4(s) + Cl– phase.

My current research explores several critical unanswered
questions about the Mn-based battery chemistry, including the
solvation structure and dynamics of Mn-containing electrolytes;
the mechanism of the MnO2 dissolution–precipitation electrode
and dissolution–precipitation electrodes generally; and the in-

teraction of dissolution–precipitation electrodes with the elec-
trolyte. Foremost among these concerns is my aim to under-
stand the local solvation environments around Mn2+ ions, and
whether the composition of solvation shells around Mn2+ differ
from analogous solvation shells around Zn2+ ions. I hypothesize
that the solvation structure and dynamics of Li2MnCl4 ·x H2O
electrolytes resemble those of Li2ZnCl4 ·x H2O electrolytes, such
that the MD simulation methodology of our prior work1 to ana-
lyze the latter can be applied to the former.

To test this hypothesis at a high level, I proposed training
machine-learned force fields (MLFFs) to conducted acceler-
ated MD simulations of representative Li2MnCl4 ·x H2O elec-
trolytes. Prior work in our group studied the solvation struc-
tures and dynamics of Li2ZnCl4 ·x H2O electrolytes using both
Born–Oppenheimer molecular dynamics (BOMD) and force-
field-based molecular dynamics (FF–MD) to understand the sol-
vation structures of [ZnCl4 – m

2 – m]n ionic networks that form.1

One finding in our work was that FF–MD calculations predicted
a strongly aggregated [ZnCl4 – m

2 – m]n network of long ZnCl2
chains, corresponding to sluggish transport kinetics. BOMD
calculations led to similar structures but also predicted the ex-
istence of some smaller ClZnCl – ZnCl2 clusters. These smaller
clusters may undergo faster exchange with water in the Zn
first solvation shell, potentially increasing the predicted elec-
trolyte conductivity to more closely match experiment. How-
ever, testing this theory is limited by the high expense of and
consequently short timescales accessible to BOMD simulations,
even at artificially elevated simulation temperatures. Addition-
ally, Mn salts may exhibit even more complex behavior, with
multiple populations of Mn(H2O)xCly species coexisting. The

Figure 1. Computational Pourbaix diagrams 13,14 for the (a) Li2ZnCl4 ·x H2O and (b) Li2MnCl4 ·x H2O systems. Diagrams are shown for Li, Zn
(or Mn), and Cl in a 2:1:4 molar composition ratio and for ion concentrations of 10−2 M.
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need for DFT-fidelity simulations to properly treat the solva-
tion interactions of complex ionic species over long simulation
timescales (i.e., on the order of 1 ms) motivates the develop-
ment of accurate and computationally efficient machine-learned
force fields.21 I seek to understand which types of ML models
and training protocols will properly treat the charged anions
present in battery electrolytes when used in a MD simulation.

With access to long-timescale MD simulations of
Li2MnCl4 ·x H2O, I can calculate the solvation shell compo-
sitions and thus determine whether adding LiCl salts to the
electrolyte to suppress HER will work for a Li2MnCl4 elec-
trolyte as it does for a Li2ZnCl4 electrolyte. My research will
both (i) evaluate Li2MnCl4 ·x H2O as a potential electrolyte
for wide-temperature-range Zn-ion batteries and (ii) develop
design guidelines for training and deploying machine-learned
interatomic potentials for simulation of dense ionic liquids more
generally. Beyond the current application of Zn-ion secondary
batteries, the models and methodology I develop could be
used in other fields where the dynamics and environment
of charged particles is important, such as in semiconductors,
optoelectronics, and other solid-state electronic devices.

Below, I discuss my initial MD simulations of the Mn2+ solva-
tion shell within a Li2MnCl4 ·x H2O electrolyte. I then describe
my efforts so far to develop and test ML interatomic potentials
to accelerate these MD simulations to usable timescales.

1.2 Preparation of initial configurations using the AMOEBA

polarizable force field

My initial simulations sought to address the question of the local
solvation environment around Mn2+ ions in Li2MnCl4 ·x H2O
electrolytes compared to Zn2+ ions in Li2ZnCl4 ·x H2O elec-
trolytes. We hypothesized that the Mn2+ coordination environ-
ment would be similar to that of Zn2+ in that Mn2+ would pref-
erentially coordinate Cl– over H2O. To test this hypothesis, I be-
gan by simulating the solvation shell of Mn2+ ions within several
Li2MnCl4 ·x H2O systems using BOMD. These replicates were
prepared by my collaborator and informal mentor, Dr. Travis
Pollard, who used the PACKMOL22 software package and the
AMOEBA polarizable force field23 in order to prepare some sys-
tems in which Mn2+ ions start off highly coordinated by water
molecule ligands, as well as other systems in which Mn2+ ions
start off highly coordinated by Cl– ion ligands instead. The
reason for preparing biased systems like these is to create a
varied training dataset that samples very different parts of the
configurational phase space. Because Mn2+ likely prefers to
coordinate one of these ligands more than the other, the hope
is that running these different initial systems through BOMD
will create MD trajectories with high-energy configurations of
ligands exchanging to allow the more preferred ligand to occupy
the solvation shell. Using training data with these high-energy
configurations in addition to configurations near local minima
in the potential energy surface helps avoid developing MLFFs
that incorrectly predict dynamics when computing the kinetics
behavior of electrolytes.

To create these biased initial systems, a base system contain-
ing Li+, Cl– and Mn2+ ions along with H2O molecules under-
went classical MD simulations using the AMOEBA polarizable
force field. Within the AMOEBA framework, the parameter
Ri j,Mn–Cl controls the equilibrium distance between Mn2+ and
Cl– ions. Because the AMOEBA force field does not have a

default value of this parameter for the Mn2+–Cl– ion pair, we
based our simulations on the analogous value for Fe and Cl ions
(Ri j,Fe–Cl). In some simulations, Ri j,Mn–Cl was set to a lower value
(i.e., Ri j,Mn–Cl/Ri j,Fe–Cl < 1) to produce configurations where
Mn2+ is mostly coordinated by Cl– , while in others it was set to
a higher value (i.e., Ri j,Mn–Cl/Ri j,Fe–Cl > 1) to find configurations
in which Mn2+ is mostly coordinated by H2O. These classical
MD simulations were done using the GPU version of Tinker9
(CUDA, Nvidia A40 GPUs).24 Ewald and real-space cutoffs were
truncated to 7 Å with a 20× 20× 20 particle mesh Ewald grid.
Time integration was carried out with a multi-step RESPA in-
tegrator25 with a 2 fs outer timestep under the NVT ensemble.
Table 1 shows the target Ri j,Mn–Cl values used to produce each
replicate. Ri j values for Li+, Cl– , and H2O were reused from
our previous work on Li2ZnCl4 ·x H2O electrolytes.1

Table 1. AMOEBA equilibrium Mn–Cl distances used to prepare initial
systems with different Mn coordination environments. There was
originally a system “R3” with Ri j,Mn–Cl = Ri j,Fe–Cl (0% difference), but
an inadvertent error made that system unusable, so it is omitted from
further calculations.

Replicate Ri j,Mn–Cl compared to Ri j,Fe–Cl Ri j,Mn–Cl [Å]

R1 –10.0% 3.3325
R2 –5.0% 3.5176
R4 +7.5% 3.9804
R5 +10.0% 4.0730
R6 +12.5% 4.1656

These five replicates were generated for each of three wa-
ter compositions, in which each Li2MnCl4 formula unit is
paired with either 6, 9, or 12 H2O molecules, producing
nominal compositions of Li2MnCl4 ·6 H2O, Li2MnCl4 ·9 H2O,
or Li2MnCl4 ·12 H2O. Renderings of these five replicates for
the Li2MnCl4 ·6H2O composition appear in Figure 2. Table 2

shows the actual numbers of atoms used for each composition.
I reason that if Mn2+, like Zn2+, preferentially coordinates

one of these two ligands, then running MD simulations of these
systems in parallel will quickly reveal which ligand Mn2+ prefers
to coordinate. For example, if Mn2+ preferentially coordinates
Cl– instead of H2O, I would expect that BOMD simulations of
replicates R1 and R2 would keep Cl– in the Mn2+ first solvation
shell, while simulations of replicates R5 and R6 would start hav-
ing mostly H2O ligands around Mn2+ but eventually transition
to having Cl– ligands coordinated instead. Initial calculations of
all five replicates supported this idea. Therefore, to save compu-
tational resources, I focused on the 6 H2O, 9 H2O, and 12 H2O
versions of the R4 replicate (Figure 3), which is the replicate
currently biased to have H2O in the Mn2+ first solvation shell,
but which should most quickly undergo replacement of those
H2O molecules with Cl– ions. If Mn2+ prefers to coordinate Cl– ,
then running BOMD calculations on R4 replicates should reveal
ligand exchanges (i.e., substitutions of H2O ligands with Cl–

ligands) more quickly than using the R5 or R6 replicates.

1.3 BOMD simulations of electrolytes to generate MLFF training

data

I performed BOMD simulation on these three R4 systems
(i.e., the R4 replicates for Li2MnCl4 ·6 H2O, Li2MnCl4 ·9 H2O,
and Li2MnCl4 ·12 H2O compositions) using Kohn–Sham density
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(a) R1 (b) R2 (c) R4 (d) R5 (e) R6

Figure 2. Atom renderings for the five Li2MnCl4 ·6 H2O replicates. Color legend:  # = Mn,  # = Li+,  # = Cl– ,  # = H,  # = O. Atoms
within 3.6 Å of a Mn atom are shown as CPK spheres; all others are shown as wireframes.

Table 2. Effective compositions and box lengths for each nominal Li2MnCl4 ·x H2O composition.

Nominal composition Effective composition Total atoms Cubic box length [Å]

Li2MnCl4 ·6H2O Li20Mn10Cl40 ·60 H2O 250 14.2
Li2MnCl4 ·9H2O Li20Mn10Cl40 ·90 H2O 340 15.3
Li2MnCl4 ·12 H2O Li20Mn10Cl40 ·120H2O 430 16.3

functional theory (DFT)26 as implemented in the Vienna Ab
Initio Simulation (VASP) software package27–31 (version 6.4.3,
built for CPU). Electron orbitals were expanded in a plane-wave
basis up to a cutoff of 500 eV. Initial magnetic moments were
set to +6.0 for Mn2+ and 0.0 for all other atoms. Exchange and
correlation were computed using the revPBE functional,32 and
dispersion corrections were handled using Grimme’s DFT–D3
scheme33 with Becke–Johnson damping.34 Calculations used
Gaussian smearing with a smearing constant of 0.05 eV and
spin polarization. The molecular dynamics time integration was
performed by a velocity–Verlet algorithm35 with a timestep of
0.5 fs. The simulation was carried out in the NVT ensemble us-
ing a Langevin thermostat with a damping coefficient of 50 ps−1

for atomic degrees of freedom. Deuterium mass was used for H
atoms.

Each of the three systems was thermalized from 50 K to 450 K
under the NVT ensemble at a rate of 50 K/ps, then stabilized
under the NVT ensemble at 450 K for an additional 10 ps. The
systems were then switched to the NPT ensemble, with Parinello–
Rahman dynamics used to enforce an isobaric system. The
temperature was maintained at 450 K. Lattice cell walls with a
fictitious mass of 10 amu and with Langevin friction coefficients
of 10 ps−1 were allowed to relax against an external pressure
of 1 atm. The same Langevin friction factor was also used for
each atom’s degrees of freedom. I then ran the simulation for
10 ps in the NPT ensemble.

To evaluate whether Cl– displaces H2O in the Mn2+ first co-
ordination shell, I calculated the mean coordination number
for each of these ligands over the final 10 ps timeframe corre-
sponding to the NPT portion of the simulation. The evolution
in coordination number, arising from the radial pair distribu-
tion functions of Mn2+ with H2O and Cl– , was evaluated us-
ing the MDAnalysis36,37 and SolvationAnalysis38 software pack-
ages. The resulting coordination number evolution appears in
Figure 4.

For all three replicates, the total coordination number of
Mn2+ remains near 6, indicating qualitatively reasonable Mn2+

solvation shells with octahedrally coordinated ligands. With in-
creasing time, I qualitatively observe ligand exchanges in which

Cl– replaces H2O in the first solvation shell, consistent with
our hypothesis that Mn2+ preferentially coordinates one ligand
species over another, and with the same preference for Cl– that
Zn2+ has. The ligand exchange is pronounced for the 6H2O
system, which has a relatively high concentration of Cl– lig-
ands compared to the 9 H2O and 12 H2O systems. For 12 H2O,
the rise in Cl– coordination number is depressed compared to
systems with fewer H2O molecules, but this finding is also in-
fluenced by the overall loss in total ligand coordination number.
More investigation is needed to understand if other, unexpected
dynamics might be at play in the 12 H2O system. The Mn2+–
H2O average first solvation shell size appears to decrease as the
concentration of H2O in the system increases, with 12 H2O hav-
ing the smallest shell radius of 3.05 Å, reflective of the shorter
average Mn2+–O bonds in which more water is entrained around
Mn2+ ions. No clear trend is apparent for the Mn2+– Cl– average
first solvation shell size, although the relatively small Mn2+– Cl–

average shell size for the 6 H2O system may reflect the high sub-
stitution of complexed H2O with Cl– observed in the temporally
later portion of that NPT simulation.

The coordination number evolution also points to a chal-
lenge: the H2O–Cl– ligand exchanges appear to happen rel-
atively slowly. Even for the 6 H2O system, the Mn2+– Cl– co-
ordination number rises by only approximately 1.0 over the
10 ps period of NPT simulation. This timing indicates that much
longer time scales will be needed to study the dynamics of
Mn2+ solvation than can be feasibly achieved using current
BOMD methods. Given that 1 ps of BOMD simulation time for
a Li20Mn10Cl40 ·120H2O system can require a full day of com-
pute time on a modern, 4-GPU compute node, exploring the
ligand exchange dynamics for this system will be expensive and
relatively untenable using BOMD. This motivates training ML
interatomic potentials to accelerate MD calculations and access
longer simulation timescales.

1.4 Motivating the use of the Allegro framework for creating

MLFFs

MD simulations consist of a system of atoms or particles which
interact with each other and move through space as the simula-
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(a) Li2MnCl4 ·6 H2O (b) Li2MnCl4 ·9 H2O (c) Li2MnCl4 ·12H2O

Figure 3. Atom renderings for the three R4 replicate systems. Color legend:  # = Mn,  # = Li+,  # = Cl– ,  # = H,  # = O. Atoms within
3.6 Å of a Mn atom are shown as spheres; all others are shown as wireframes.

Simulation time [ps] Simulation time [ps] Simulation time [ps]

(a) (b) (c)

Figure 4. Evolution of first-shell coordination number of Mn2+ with either O (representing H2O) or Cl– for the (a) Li2MnCl4 ·6 H2O,
(b) Li2MnCl4 ·9 H2O, and (c) Li2MnCl4 ·12 H2O R4 replicates at 450 K and 1 atm. Coordination numbers are sampled every 0.5 ps over the final
10 ps of NPT equilibration. Also listed on the left side of each panel are the average radii of the Mn2+–O and Mn2+– Cl– first solvation shells.
These radii are used as the cutoff for determining whether an H2O or Cl– ligand is coordinated or not.

tion moves forward in time. The critical calculation enabling
MD simulations is the computation of directional forces on each
atom, which tells the computer how to move each atom as the
simulation progresses. Interatomic potentials are algorithms
used to compute the forces on each atom and vary in complexity
and computational cost. BOMD uses density functional theory
as the interatomic potential to compute atomic forces but is very
expensive because it must explicitly treat the ground-state elec-
tron density of the atomic system. Other interatomic potentials,
such as the Lennard–Jones model,39 are computationally very
cheap but do not compute accurate atomic forces and produce
MD simulations that inaccurately predict macroscopic material
properties.

To accelerate MD simulations of my Li2MnCl4 ·x H2O systems,
I surveyed ML models that could be trained to act as interatomic
potentials. The catalysis and surface science communities have
developed several ML models focused on systems of small
molecules adsorbed on heterogeneous metal catalyst surfaces,
including crystal graph convolutional neural networks, message-
passing networks, and other deep-learning networks.40–44 These
models enable relatively cheap but high-accuracy predictions
of total system energy and atomic forces, suitable for ML-
accelerated geometry relaxation of slab–adsorbate catalyst sys-
tems, but may not offer this accuracy in the context of bulk

liquids like a battery electrolyte. Additionally, a ML model serv-
ing as an interatomic potential for a MD simulation should
ideally be E(3)-equivariant with respect to symmetry operations
like translation, rotation, and mirroring. This broadly means
that predicted scalar quantities like the system energy should
not change when the system’s atoms are uniformly translated,
rotated, or mirrored, but that predicted vector quantities like
atomic forces and dipole moments should, as is the case physi-
cally.

One family of models designed both for bulk materials simu-
lation generally and with E(3) equivariance built into the model
architecture includes the NequIP45 and Allegro46 models devel-
oped by Boris Kozinsky’s group at Harvard University. NequIP
follows the lead of crystal graph convolutional neural networks
in representing atoms in a bulk material as nodes with learnable
parameters interconnected via graph edges with more learnable
parameters.47 However, NequIP extends this concept by learn-
ing parameters that are higher-order geometric tensors rather
than simple scalars and by encoding angular information about
the local chemical environment around an atom rather than
just scalar interatomic distances. This allows NequIP to achieve
energy and force predictions, achieving respective mean abso-
lute errors (MAEs) on the order of 5 meV/atom or 5 meV/Å
and outperforming similar deep-learning models. The Allegro
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model architecture approximates the NequIP architecture and
is designed to encode the same local chemical environment,
but using only information within a strict radial cutoff around
each atom. This strictly localized Allegro architecture enables
efficient parallelization across an atomic system’s physical sub-
domains, greatly increasing the speed of Allegro MD simulations
on massively parallel computers without significantly compro-
mising accuracy.

1.5 Initial training and validation of equivariant Allegro MLFF

models on Li2ZnCl4 ·x H2O data

I intended to train Allegro ML models on my existing
Li2MnCl4 ·x H2O BOMD data in order to enable accelerated
MD simulations for this system. However, my Li2MnCl4 ·x H2O
BOMD data indicated slow ligand exchange of H2O and Cl–

within the Mn2+ first solvation shell (Figure 4). Understanding
ligand exchange is critical to understanding macroscopic prop-
erties of battery electrolytes, such as ionic conductivity. The
10 ps of data I generated for each R4 replicate system likely
does not adequately sample the region of configurational space
in which H2O–Cl– ligand exchanges occur, and training a MLFF
on this data will lead to MD calculations that don’t yield useful
information on ligand exchange processes. Additionally, I found
that DFT calculations on Li2MnCl4 ·x H2O systems are signif-
icantly more challenging to converge and take much longer
than the corresponding calculations on Li2ZnCl4 ·x H2O systems
in our previous work.1 It would likely take months of BOMD
calculations on the Li2MnCl4 ·x H2O system to generate enough
data to observe the types of ligand exchanges already available
in our previous Li2ZnCl4 ·x H2O BOMD data. Therefore, I chose
to instead train Allegro MLFFs on the available Li2ZnCl4 ·x H2O
data to better understand the MLFF training process and typical
challenges we might encounter.

I collated existing Li2ZnCl4 ·x H2O BOMD data gener-
ated by my colleague, Dr. Travis Pollard, into a shuffled
collection of images covering NPT-ensemble simulations of
Li2ZnCl4 · (6,8,10,15) H2O systems at 1 atm. As with my
Li2MnCl4 ·x H2O BOMD data, the effective compositions in
each box are ten times the nominal compositions, as shown in
Table 3. This data is comprised mostly of MD trajectories from
two tasks: (i) NPT annealing of Li2ZnCl4 ·x H2O systems from
450 K to 298 K at 1 atm; and (ii) NPT equilibration of the an-
nealed systems at 298 K and 1 atm for up to 24 ps. The frames
I selected from these datasets are summarized in Table 4. To
bias the MLFF training towards learning intermolecular inter-
actions from the higher-temperature portions of the annealing
trajectory, I sampled images from the first half of each annealing
trajectory (going from 450 K to 374 K). To avoid spurious sys-
tem shocks or artefacts related to the beginning of equilibration,
I sampled images from only the second half (from 12 ps to
24 ps) of each of the NPT equilibration trajectories. I sampled
only one of every 50 images in these equilibration trajectories
to again focus the MLFF on high-temperature, more repulsive
conditions.

Initial calculations indicated that the Allegro MLFF might
benefit from even more examples of repulsive forces between
atoms, so I additionally included some shrunken images in
the training dataset as well. I randomly selected 25% of the
annealing and equilibration images (or 360 images), made
copies of each image scaled down to both 92% and 80% of

its original lattice constant, and performed single-point DFT
evaluations of the system energy and atomic forces for each
image. This resulted in a total of 720 images with significantly
higher interatomic repulsive forces. These images were then
added to the original 1200 annealing and 240 equilibration
images for a total of 2160 images in the dataset.

I then trained an Allegro MLFF on this dataset, using a 90/10
train/validation split, a training batch size of 1 image (stochas-
tic gradient descent), a radial cutoff of 4 Å, spherical harmonics
of order 2, one tensor product layer, and equal weights on force
and per-atom system energy losses in the loss function. Training
proceeded until the energy and force MAEs on the validation
set were approximately 5 meV/atom and 50 meV/atom, respec-
tively, which is in line with the reported MAEs for the Li3PO4

solid electrolyte system used an Allegro model benchmark.48

However, even with the bias in training data towards interatomic
repulsion through using higher-temperature or shrunken im-
ages, my Allegro model predicted unexpected atomic forces
in a MD simulation of Li2MnCl4 ·6 H2O that led to unphysical
particle aggregation of H and O atoms (Figure 5).

Figure 5. Unphysical particle aggregation arising from a classical
MD simulation of Li2ZnCl4 ·x H2O using an Allegro MLFF. The Allegro
model is trained using spherical harmonics of order 2 and a radial
cutoff of 4 Å. The classical MD simulation is done under NVT at 450 K
and this frame is taken at 1.72 ps into the simulation. Aggregation
is visible near the left of the frame in which several H and some Cl
atoms surround a core of O atoms.

I reasoned that adding a short-range Ziegler–Biersack–Littmark
(ZBL) screening interaction49 might help compensate for the
lack of repulsive forces between H and O atoms in the train-
ing data. However, ZBL corrections only delayed and did not
prevent this unphysical aggregation.

1.6 Switching to bulk water to better understand MLFF model

training protocols

The challenges with training an Allegro MLFF to predict the
behavior of Li2ZnCl4 ·x H2O electrolytes could have arisen for
several reasons. For example, the MLFF may not have been
trained for a sufficiently high number of epochs, and the model
hyperparameters used above also may not be optimal for the
Li2ZnCl4 ·x H2O system. Alternatively, the MLFF might itself
be incapable of representing a charged ionic liquid no matter
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Table 3. Effective compositions and box lengths for each nominal Li2ZnCl4 ·x H2O compositions. Box lengths were taken from the beginning of
each NPT equilibration trajectory at 298 K and 1 atm.

Nominal composition Effective composition Total atoms Cubic box length [Å]

Li2ZnCl4 ·6H2O Li20Zn10Cl40 ·60 H2O 250 14.2
Li2ZnCl4 ·8H2O Li20Zn10Cl40 ·80 H2O 310 14.9
Li2ZnCl4 ·10 H2O Li20Zn10Cl40 ·100H2O 370 15.7
Li2ZnCl4 ·15 H2O Li20Zn10Cl40 ·150H2O 520 17.1

Table 4. Composition of the training dataset used to train the Allegro model. Each row represents a different subset of BOMD training data. All
subsets are shuffled together in the final training dataset.

System Procedure Time, conditions Images
Effective total images
included in training

set

Li2ZnCl4 · (6,8,10,15) H2O
Annealing: NPT @

450 K→ 298 K
12 ps (ramp
–12.67 K/ps)

2.4k 1.2k

Li2ZnCl4 · (6,8,10,15) H2O
NPT equilibration @

298 K
12 ps (12→ 24 ps) 24k 240

Shrunken images:
Li2ZnCl4 · (6,8,10,15) H2O

Annealing: NPT @
450 K→ 374 K (300

images); NPT
equilibration @ 298 K

(60 images)

All 360 images scaled
to both 92% and 80%

of original lattice
constant.

360 720

which hyperparameters are used or for how long it trains. To
isolate the cause of failure and to better understand how to train
such models, we proposed first training an Allegro MLFF on
bulk water. Successfully training Allegro MLFFs on bulk water
data and reproducing the known system density, self-diffusion
coefficient, and viscosity of bulk water gives us confidence in
applying Allegro to more complex systems.

We proposed training Allegro MLFFs on systems of increasing
complexity: first on bulk water, then on LiCl ·x H2O, then on
Li2ZnCl4 ·x H2O, then finally on Li2MnCl4 ·x H2O. Each stage
of training should yield insight on how to extend MLFFs to
the next more complex system. Successfully training the bulk
water system should inform how we train a LiCl ·x H2O system;
successfully training the LiCl ·x H2O system should inform how
we deal with Cl– ions in a Li2ZnCl4 ·x H2O system; and so on.

To begin this process, I switched to using MD trajecto-
ries of molecular water in a box under the NPT ensemble
at 298 K and 1 atm as the training data. I took five random
frames of bulk water from a NPT trajectory used as training
data in the work of Cheng et al. 50 (https://github.com/
BingqingCheng/ab-initio-thermodynamics-of-water/

blob/master/training-set/dataset_1593.xyz). I then used
these five frames as initial frames to generate five parallel MD
trajectories of liquid water under NPT conditions at 298.15 K
and 1 bar. These classical BOMD calculations were performed
with CP2K51 (version 2024.1, CPU). Forces and energies were
evaluted by DFT at revPBE level of theory with DFT–D3 Grimme
dispersion corrections. Molecular orbitals were expanded in a
Gaussian-and-plane-wave approach, using local double-ζ basis
sets (DZVP–MOLOPT–SR–GTH) and Goedecker–Teter–Hutter
pseudopotentials (GTH–PBE) parameterized for the PBE family
of functionals. Molecular dynamics were conducted in the NPT
ensemble with an isotropic cell for at least 20 ps at a timestep

of 0.5 fs and with every 4 frames written to disk, for a total of
56.9k frames. For each of the five resulting trajectories, the
first 2.5 ps of the trajectory was discarded and the rest used
as equilibrated data. These remaining frames were shuffled
and divided into chunks of 2.5k to provide 13 separate datasets
for validation and testing tasks. A similar procedure was used
to prepare the hydrogen-mass-repartitioned MD training data
discussed later.

1.7 Challenges with using Allegro MLFFs for inference during

bulk water MD simulations

I conducted basic hyperparameter exploration and trained ap-
proximately 30 Allegro MLFFs in hopes of finding one that
could reproduce known macroscopic properties of liquid wa-
ter. I found that most Allegro models predict either system
energy or atomic forces well, but usually do not predict both
quantities well simultaneously. The velocity–Verlet algorithm
depends more on accurate forces than on having an accurate to-
tal system energy. Thus, I preferred models with accurate force
predictions and ultimately settled on one with a force MAE of
approximately 30 meV/Å, on par with the benchmark Li3PO4

system in the Allegro paper48 and reasonably cheap to evaluate.
When using this model for accelerated MD calculations of water,
I did not observe particle aggregation, but did observe a large
deviation in the system density from the expected water density
of 1 g/mL.

In fact, Allegro models appear to systematically underpredict
the density of liquid water. This underprediction happens de-
spite hyperparameter optimization of the spherical harmonic
function order, the number of tensor product layers, the ra-
dial cutoff, or the dimensions of the environment-embedding,
latent, or two-body network layers. For hyperparameter com-
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binations that didn’t cause the simulation box to immediately
blow up or collapse, the system density converges to approxi-
mately 0.80 g/mL (Figure 6). Counterintuitively, I found that
specifying a weight on the losses of cell stresses in the loss
function actually made the predicted water-box density under
NPT less accurate than omitting stress from the loss function
altogether. Additionally, the units of cell stress in the training
data, which from the available documentation could be either
bar or eV/Å

3
, did not seem to affect the accuracy of the pre-

dicted system density. I also added ZBL screening corrections
with inner and outer radial cutoffs of 0.1 Å and 1.0 Å, reasoning
that a lack of repulsive forces between H and O atoms might
affect macroscopic density change, but these corrections did not
meaningfully improve the system density.

Figure 6. Density evolution of liquid water (1728 H2O) during a NPT
simulation as calculated by BOMD (CP2K) versus LAMMPS with an
Allegro potential. The dotted line indicates a density of 1 g/mL.

One possible explanation for the underpredicted density
might be that my original BOMD training data of water
molecules used a H weight of 1 amu, which may overrepre-
sent intramolecular H–O vibrations in the atomic forces in the
training data. Fast H–O vibrations across many water molecules
correspond to a very noisy potential energy surface, making
system energies and atomic forces harder to predict correctly.
These fast vibrations may also artificially inflate repulsive forces
between water molecules, which might explain why even the
CP2K-predicted density in Figure 6 is less than experimentally
expected. To address this problem, I generated new BOMD
trajectories in which I set the respective masses of H and O
atoms to 3 and 12 amu. Moving some mass from the O atom
of a water molecule to its neighboring H atoms is a technique
called hydrogen mass repartitioning. Hydrogen mass reparti-
tioning damps some of the more noisy H–O vibrations while still

conserving the total mass of each water molecule. The resulting
BOMD trajectories can improve ML model predictions of system
energies and forces, but impact water transport properties less
than if one was to simply deuterate or tritiate each H atom
without adjusting the O masses.52,53 Unfortunately, hydrogen
mass repartitioning did not resolve the problem of artificially
low system density: the average water-box density predicted
by DFT still holds near 0.93 g/mL over 5 BOMD replicates and
20 ps of simulation, and the resulting Allegro models still pre-
dicted even lower densities near 0.80 g/mL over 5 classical MD
replicates and 20 ps of simulation.

With the Allegro model seemingly unable to reproduce even
the density of water, I concluded that this family of MLFFs may
not be currently appropriate for my research because liquid elec-
trolyte density and viscosity are critically important properties
for battery electrolyte development.

1.8 Motivation for exploring DeePMD-kit MLFFs

I next turned to exploring the DeePMD-kit ML framework,
which offers another family of deep-neural-network-style ML
models for learning interatomic potentials from system ener-
gies, atomic forces, and system stresses.54,55 I initially avoided
DeePMD-kit models because they require more training data
than NequIP/Allegro models do45 and, like the ML framework
built into VASP,56–58 also may not be equivariant with respect
to mirror plane inversions. However, the challenges in training
NequIP/Allegro models reproduce even the density of water
made it compelling to investigate alternative MLFFs.

A DeePMD-kit model combines one of of several available
atomic system descriptors with a fitting net. Descriptors are al-
gorithms that examine the local chemical environment around
a particular atom and convert this information to tensors of
numbers. Such tensors specifically encode the types of neigh-
boring atoms, their distances from the particular atom, and
their orientation around the particular atom. The generated
tensors are a machine-readable representation of the atomic
system that make it easier for a ML model to learn output prop-
erties. DeePMD-kit comes with several descriptors ranging in
complexity from encoding just position data about neighboring
atoms59 or two-/three-body interactions,60,61 to larger neural-
net, attention-based algorithms62 not unlike those of NequIP.
Recent versions of DeePMD-kit have newer, “smooth” descrip-
tors that are continuous and differentiable at their cutoff radii,
which facilitates model training and simulation stability. The
fitting net is a neural network model that learns to predict
the system energy, atomic forces, or atomic cell stresses given
the output of the descriptor. Both the descriptors and fitting
nets have several tunable hyperparameters. The DeePMD-kit
framework has some support for long-range electrostatic inter-
actions,63 which would be useful for modeling charged ions an
electrolyte liquid, although these descriptors are more complex
to train and use than the local descriptors are. For the purposes
of this preliminary DeePMD-kit investigation, I focused only on
the smooth, local descriptors discussed below.

1.9 Initial training and validation of DeePMD-kit MLFFs on bulk

water data

As with my previous work using Allegro models, I first attempted
to train DeePMD-kit interatomic potentials for systems of liq-
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uid water before moving to more complex systems of solvated
ions. I considered the se_e2_a , se_e2_r , se_e3 , se_a_tpe ,
se_a_ebd_v2 , and se_atten_v2 descriptors as implemented in
DeepMD-kit 2.2.11. I began by establishing reasonable de-
fault values for each descriptor’s hyperparameters based on the
documentation, then enumerated different possible values for
each tunable hyperparameter, leading to 255 different trainable
DeePMD-kit models. The general DeePMD model architecture
makes these models individually cheaper to train and evaluate
than NequIP/Allegro models, allowing wider exploration of the
hyperparameter space. Each of these models was trained on H-
mass-repartitioned water-box BOMD data, with a training data
split of 2025 frames taken from a 81/9/10 train/validation/test
split of 2500 frames. Each frame contains 64 water molecules
(or 192 atoms total). Training was done using stochastic gradi-
ent descent (i.e., a training batch size of 1), as I suspected that
this setting will help improve model performance on predicting
individual atomic forces as it does for NequIP/Allegro models.
Of these initial 255 DeepMD-kit models, 189 of them trained
without crashing due to memory or hyperparameter compatibil-
ity errors. Initial hyperparameter exploration showed that with
default hyperparameters, the se_a_ebd_v2 descriptor performed
the best of the available descriptors. This best-performing model
(which I named hpe-aaad) has a cutoff radius of 6 Å as well as
a fitting net of 3 layers of 240 neurons each, achieving valida-
tion set root-mean-squared errors (RMSEs) of approximately
55 meV/Å (force) and 0.09 meV/atom (energy) after training
for about 25k gradient descent steps, again on par with the
accuracy required for an Allegro model to achieve a stable MD
simulation.48

1.10 Challenges with using DeePMD-kit MLFFs for inference

during bulk water MD simulations

While the training process appeared to succeed, model infer-
ence indicated more challenges. When I attempted classical
MD using model hpe-aaad under NPT conditions at standard
conditions (velocity–Verlet dynamics with a timestep of 0.5 fs),
I observed particle aggregation as soon as 0.5 ps and contrac-
tion of the simulation box to a system density above 1 g/mL.
Adding a ZBL screening interaction with respective inner and
outer cutoffs of 0.5 Å and 1.0 Å to increase repulsion appears
to delay the onset of particle aggregation, but particle aggre-

gation still dominates the simulation by approximately 10 ps
(Figure 7), along with causing the system density to drop below
1 g/mL. Extending the ZBL inner and outer cutoffs outward to
0.75 Å and 1.5 Å to temper the repulsive interactions between
molecules causes drastic contraction of the simulation box to
a density of 4.55 g/mL. Even when running under NVT con-
ditions and enforcing a system density of 1 g/mL, significant
particle aggregation occurs within 7 ps, much sooner than the
timeframe required to obtain statistically reliable results. As
with Allegro models, adding a ZBL repulsion interaction to the
DeePMD-kit interatomic potential during classical MD only de-
lays but does not prevent particle aggregation under either the
NVT or NPT ensembles.

I reasoned that despite the relatively low validation RSMEs of
my DeePMD-kit model for atomic forces and system energy, per-
haps my model was not adequately learning atomic forces near
the end of training, as the default loss function in DeePMD-kit
models involves the gradual shift of weight from force loss to
energy loss as the simulation proceeds, with no weight on virial
tensor component losses. I hypothesized that a greater weight
on virial tensor component loss along with constant weights
on the force, energy, and virial tensor component losses might
allow the model to more accurately learn intermolecular inter-
actions, avoiding particle aggregation and blowup/collapse of
the system simulation box under NPT. To test this hypothesis,
starting with my existing hpe-aaad model, I further explored
different weights of energy, force, and virial tensor component
losses in the loss function as well as the initial learning rate
for the fitting net. This produced an additional 179 models
to train. Training proceeded until validation set RMSEs were
again near 50 meV/Å (for forces) and 5 meV/atom (for ener-
gies). All 179 models completed training for approximately
24 hours, or about 19k gradient descent steps. I chose six mod-
els (named hpe-25a8 , hpe-1cb6 , hpe-a010 , hpe-ba1f , hpe-0620 ,
and hpe-ba44) that appeared to perform best on both system
energy and atomic force predictions. These models still tend
to weight force loss over energy loss by a factor of 1000, with
weights on energy losses typically a factor of 2 greater than
weights on virial tensor component losses. Furthermore, these
models typically have validation RMSEs of 0.015 meV/atom (for
energy) and 60 meV/Å, again within the typical magnitude of er-
ror corresponding to stable MD simulations for NequIP/Allegro
models.48

(a) t = 0 ps (b) t = 5 ps (c) t = 10 ps (d) t = 20 ps

Figure 7. Classical MD simulation of 1728 H2O using DeePMD-kit model hpe-aaad based on the se_a_ebd_v2 descriptor with a 6 Å radial cutoff
and fitting net dimensions of [240, 240, 240] neurons. Simulation is done in the NVT ensemble at 298.15 K and with a ZBL repulsion screening
interaction at respective inner and outer cutoffs of 0.5 Å and 1.0 Å. Despite using the ZBL repulsion interaction, significant particle and phase
aggregation still occurs. Semitransparent white regions surround areas of particle aggregation.  # = H,  # = O.
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However, these models unexpectedly performed even worse
than the hpe-aaad model with respect to NPT simulation of bulk
water. Instead of the box density only slowly converging to a
density other than 1 g/mL (perhaps with some gradual particle
aggregation), the simulation box immediately balloons or con-
tracts drastically within the first 2.5 ps of simulation (Figure 8).
All models except hpe-25a8 cause the simulation box to ex-
pand towards a water density of 0 g/mL, leading to isolated
water molecules or clusters. Model hpe-25a8 behaves in the
opposite fashion, causing the box to collapse and eventually
reach a system density of approximately 5.5 g/mL. Further

Figure 8. Evolution of water system density under standard condi-
tions (NPT ensemble) for classical MD simulations using DeePMD-kit
derivatives of the hpe-aaad interatomic potential. An additional MD
simulation using a pretrained se_e2_a DeePMD-kit model is included
for comparison.

investigation of each model’s performance on predicting en-
ergies, forces, and virial tensor components show that these
six models universally predict atomic forces very well, but sys-
tem energy predictions have much more variance and tend
to be overpredicted by 1 to 3 eV in most cases. I also unex-
pectedly observed that most of these models accurately predict
off-diagonal virial tensor components well, but tend to over- or

underpredict on-diagonal components by 0.001 to 0.005 eV/Å
3

(0.16 to 0.80 kbar). However, no consistent correlation exists
between whether the on-diagonal components are over- or un-
derpredicted and whether the simulation box will respectively
expand or contract under NPT conditions.

To assess whether the inaccuracies of my DeePMD-kit model
predictions arise from the way I trained the models or are sys-

temic to the DeePMD-kit framework itself, I ran simulations
using a pretrained DeePMD-kit model based on water-box data
which uses the se_2_a descriptor and which is included in the
supporting information of the DeePMD-kit V2 paper.55 The clas-
sical MD system density evolution using this model is shown
in Figure 8 for comparison. Like the hpe-aaad model I trained,
this model also uses a radial cutoff of 6 Å, fitting network layer
dimensions of [240,240,240], and the same default ramping
energy, force, and virial-tensor-component loss function weights
(0.02→ 1 for energy, 1000→ 1 for forces, and 0→ 0 for virial
tensor components). Surprisingly, using this pretrained model
as an interatomic potential in a classical MD simulation of my
water-box data produces the behavior I would expect: a consis-
tent system density of near 1 g/mL without particle or phase
aggregation through the entire 20 ps simulation period. While
the density does begin to drop closer to 0.9 g/mL at 15 ps, this
model performs much better than any of the DeePMD-kit models
I have trained. Some differences in training protocol may ex-
plain why the pretrained model performs better than my models.
In particular, the pretrained model was trained using an auto-
matic batch size, indicating that stochastic gradient descent ap-
proaches may not offer the same likelihood of accurate force pre-
dictions for DeePMD-kit models as they do for NequIP/Allegro
models. Additionally, the DeePMD-kit model architecture, like
NequIP/Allegro models, seems to more accurately reproduce
water system density when virial tensor component losses are
excluded from the loss function. These findings suggest that
rules of thumb for training one deep-learning, tensor-based
MLFF may not extend to another MLFF. Additionally, for liquid
systems, there may currently be a trade-off between accurately
capturing stresses on the simulation cell (which are needed to
compute macroscopic viscosity) and accurately predicting the
system density, limiting the accuracy to which one can predict
the system’s kinematic viscosity.

It is also possible that my models were trained for too short
a time and on too small a dataset of BOMD images, and an
ongoing effort is to retrain DeePMD-kit models on larger training
datasets, for greater numbers of gradient descent steps. As a
non-E(3)-equivariant family of models, DeePMD-kit models
also likely require more training data to achieve comparable
accuracy in system energy and atomic force predictions.45,64

One possibility is to train the DeepMD-kit models on the original
dataset of 300k non-hydrogen-mass-repartitioned water-box
MD frames, which is about an order of magnitude larger than
the hydrogen-mass-repartitioned dataset. Additionally, I would
train DeePMD-kit models using larger batch sizes as this was
the training protocol for the more accurate pretrained model
discussed above.

A final possibility is to investigate whether my DeePMD-kit
models used too many parameters and thus exhibited high vari-
ance that led to the unphysical predicted behavior of water. The
fitting network layer dimensions of [240, 240, 240] nodes may
be too large to represent the my water-box system, and limiting
the size of the embedding and fitting networks could lower the
amount of training data required. A DeepMD-kit model trained
on as few as 100 frames of coarse-grained water MD data with
embedding network layer dimensions of [8, 16, 32] nodes and
energy fitting network layer dimensions of [32, 32, 32] nodes
was shown to acceptably reproduce the O–O radial distribu-
tion functions and three-body angular distribution functions
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of atomistic TIP3P and SPC/E water.65 Carefully limiting the
size of the neural networks in a DeePMD-kit model may both
reduce model variance with respect to test data and make the
model cheaper to evaluate, directly translating to more stable
MD simulations that extend to longer timescales.

2 Ongoing and future efforts

While I have not completely abandoned hope that
NequIP/Allegro and DeePMD-kit models might eventually
be trainable for my systems of interest, I am focusing my efforts
on other approaches to constructing a performant MLFF. These
include the active learning capability built into recent (as of
version 6.3.0) versions of VASP, as well as the machine-learning
polarized atomic orbital (PAO–ML) framework of CP2K. The
VASP ML framework differs from the ML frameworks I pre-
viously investigated because it strategically constructs the
training dataset as it trains rather than requiring a training
dataset to be completely generated at the start. The CP2K
PAO–ML framework is also interesting because it internally
learns atomic orbital structure rather than atomic forces and
system energies, enabling calculation of properties beyond
system energy and atomic forces. These efforts are ongoing and
no clear comparison to the other ML approaches is available
yet.

2.1 Active learning with stream-based sampling to construct ML

force fields

The ML approach built into VASP is an application of active
learning that uses primarily stream-based sampling (Figure 9).
Active learning is an approach to training supervised ML models
when it is expensive to calculate the labels on unlabeled training
data.66 In my systems, the unlabeled training data is the con-
figuration of atomic positions, atom types, and cell dimensions
for each frame of MD trajectory. The labels are system energy,
atomic forces, and cell stresses, and are generally expensive
to calculate. Supervised learning approaches, such as those
implemented in NequIP/Allegro and DeePMD-kit models, as-
sume that all MD trajectory frames that comprise the training
data have already had their system energies, atomic forces, and
cell stresses calculated from the start. In this scenario, training
is mostly an iterative process that seeks to minimize the error
between model predictions and known label values. In contrast,
active learning approaches begin model training with little or no
training data and use one or more sampling approaches to de-
cide which pieces of unlabeled training data to add to the model
at each training step (i.e., by invoking the expensive calculation
of the system energy, atomic forces, and cell stresses). The hope
is that with an adequate sampling approach, the ML model can
learn how to predict the correct system energy, atomic forces,
and cell stresses while minimizing the number of expensive
calculations that must be done to obtain this training data in
the first place.

VASP’s on-the-fly ML scheme uses a molecular dynamics en-
gine to generate new training configurations of atoms (i.e., the
unlabeled data represented as frames of atomic positions and
cell dimensions). Either electronic structure calculations or the
current version of the ML model is used to calculate forces on
those atoms and propagate them in space, generating the next

Figure 9. Strategy for stream-based (or selective) sampling. The
oracle represents an expensive computation call, like a DFT evaluation
of the atomic forces of a system in VASP. Reproduced from Settles 66 ,
Figure 1.5(a).

frame of unlabeled data. At each step, a Bayesian error esti-
mate is used to calculate the model uncertainty with respect to
predictions of forces on each atom. Predicted Bayesian errors
above a specified threshold trigger an expensive first-principles
evaluation of the system energy, atomic forces, and cell stresses,
with this now-labeled MD frame added to the pool of labeled
training data that is used to periodically update the ML model
weights. The sorting of each frame of training data for inclusion
into or exclusion from the labeled training data individually
and in sequence, rather than mass sorting of a pool of frames at
once, indicates a stream-based sampling approach. VASP’s ML
framework appears to be designed primarily for accelerating
MD calculations. Stream-based sampling is used to gradually
expose the ML training process to atomistic configurations that
resemble the phase space that MD would normally explore, with
the ability to save time by retraining the ML model only when
a new frame is evaluated with DFT and added to the dataset.
The training data fed to the model can then be adapted in real
time to better balance exploration and exploitation by biasing
the simulation in the same ways one would apply during MD
to explore a larger region of phase space. For example, the
VASP documentation recommends on-the-fly training using a
thermalization ramp of gradually increasing MD simulation tem-
perature. As the model improves at predicting atomic forces for
low-temperature structures of low atomic repulsion (i.e., high
exploitation of local phase space), it can be forced to explore
higher-temperature ranges with more chaotic and repulsive
interactions (i.e., more exploration of non-local phase space).

As with previous efforts, I started by training VASP ML models
of bulk water. Because system density was an issue in previ-
ous attempts with NequIP/Allegro and DeePMD-kit models, I
investigated a variety of exchange–correlation functionals and
dispersion corrections when performing the BOMD evaluations
of training data during the active learning process. These combi-
nations included the following: revPBE + DFT–D3(BJ); r2SCAN
+ DFT–D3(BJ); r2SCAN + DFT–D4; r2SCAN + rVV10; rSCAN +
DFT–D3(BJ); rSCAN + DFT–D4; rSCAN + rVV10; and rSCAN
with no dispersion correction. Using these combinations aims
to explore whether more advanced meta-GGA functionals are
necessary to capture the density of liquid water under ambient
conditions and the self-diffusion coefficient of water molecules
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in the liquid. I am also interested in understanding which disper-
sion corrections would be the most helpful in modeling liquid
interactions in a Li2MnCl4 ·x H2O electrolyte.

I started with a box of 64 H2O molecules at a system den-
sity of 1 g/mL as the initial image. I set up VASP ML active-
learning training jobs for each of the eight combinations of
exchange–correlation functional and dispersion correction. As
recommended in the VASP documentation, I set the plane-wave
energy cutoff to 910 eV to accommodate changes in cell size
during the NPT MD training runs. I also constrained the cell
to remain cubic in shape throughout the training process. Spin
polarization was used for all calculations, as well as a Gaus-
sian smearing constant of 0.02 eV. The MD training run took
place in the NPT ensemble at an external pressure of 1 atm
and a starting temperature of 50 K, which was increased to
450 K at a rate of 50 K/ps. NPT conditions were enforced by
Langevin dynamics, with an simulation timestep of 0.5 fs, a
lattice degrees-of-freedom friction coefficient of 10 ps−1 and
fictitious lattice mass of 10 amu. The Langevin friction coef-
ficients for all atoms was set to 50 ps−1, and deuterium mass
was used for all H atoms. Integration over the first Brillouin
zone was done using a single-point, Γ -centered k point grid and
the hard versions of PBE pseudopotentials were used to model
core electrons for O and H atoms. For calculations using the
Grimme DFT–D3(BJ) and DFT–D4 dispersion corrections, the
s6, s8, a1, and a2 parameters were taken from Ehlert et al. 67

For calculations using the rVV10 kernel, the b and c parameters
were taken from Ning et al. 68 (for r2SCAN) and Peng et al. 69

(for rSCAN, as an approximation from the SCAN + rVV10 pa-
rameters). Additional ML hyperparameters in the VASP ML
model architecture were left at their default values. In total,
eight ML models were produced, corresponding to the eight
combinations of XC functional and dispersion correction.

To test the quality of the ML models, ML simulations were
run on the same initial trajectory frame of 64 water molecules
replicated 3 times in each dimension, for a total of 1728 water
molecules. The ensemble, thermostat, timestep, and other MD
settings were kept the same as in the active learning training
above, except that hydrogen atoms were restored to a mass of

1.008 amu instead of using deuterium mass and system temper-
ature was maintained at a constant 298.15 K. The simulation
ran for a total of 20 ps in the NPT ensemble, comprised of a
10 ps equilibration period followed by a 10 ps production pe-
riod. To evaluate the relative performance of each ML model,
I compared each ML model’s prediction of the O–O and O–H
radial distribution functions, the water self-diffusion coefficient,
and the evolution of system density.

Radial distribution functions. To evaluate water structure, O–
O and O–H radial distribution functions (RDFs) were computed
from the NPT trajectory using the implementation in the Solva-
tionAnalysis38 software package and appear in Figure 10. For
computational tractability, RDFs were sampled every 40 frames
(every 0.02 ps) from the production period. For comparison to
experiment, I also include in the plot experimentally measured
O–O and O–H RDFs. The O–O RDF is taken from Figure 2 of
Pettersson and Takahashi 70 , which in turn is computed from
the X-ray diffraction experiments of Skinner et al. 71 The O–H
RDF is taken from the X-ray diffraction data of Hura et al. 72 As
a first-pass evaluation of each model’s fidelity to experiment and
to compensate for differences in system density, I scaled and
shifted the experimental RDF curves to match the general posi-
tions of peaks and troughs in the RDF curves from my ML model
results. All non-experimental RDF curves were normalized to
have a value of 1 at the longest distances.

For the O–O RDFs, ML models trained using rSCAN + DFT–D4
and rSCAN with no dispersion correction appear to avoid some
intermolecular understructuring in the troughs near 3.2 Å and
4.3 Å, while revPBE + DFT–D3(BJ) significantly overstructures
the system at all distances. r2SCAN models and rSCAN models
with DFT–D3(BJ) or rVV10 corrections seem to systematically
understructure water at distances below 5 Å, although they
agree well with experiment and with each other at distances
over 5 Å.

For the O–H RDFs, all ML models predict severe overstruc-
turing compared to experiment at distances near 1 Å due to
intramolecular O–H interactions being included in the RDF cal-
culation. All models also predict overstructuring at the peak

Figure 10. Calculated (a) O–O and (b) O–H RDFs for liquid water for all VASP ML models.
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near 1.9 Å, but appear to more closely match the experimental
RDF in the trough and peak at 2.4 Å and 3.2 Å, respectively.
At longer distances (i.e., at 4.2 Å), it appears that revPBE +
DFT–D3(BJ) and rSCAN with no dispersion correction most
closely resemble the experimental RDF by not overstructuring
the system, although the shape of the experimental curve at that
distance is more closely matched by the three r2SCAN models.

While these conclusions depend somewhat on the arbitrary
way in which the experimental RDF curve was scaled and shifted,
I generally see that no single ML model performs exceptionally
well in reproducing the equilibrium structure of water. However,
rSCAN models with DFT–D4 or without a dispersion correction
may offer a good first approximation for the water structure at
short-range distances (i.e., below 4.0 Å).

Self-diffusion coefficient. To evaluate how well each ML model
predicts the dynamics of the water MD simulations, I computed
the self-diffusion coefficients of water for each model. The
self-diffusion coefficient was computed using the Einstein re-
lation to the mean-squared displacement (MSD).73 For each
ML model, MSD curves were calculated over all particles and
over the entire NPT trajectory (including both the equilibration
and production periods). MSD curves were computed using the
FFT implementation available in the MDAnalysis74,75 software
package and appear in Figure 11. Because the equilibration
and production portions of the NPT trajectory were created in
sequential but separate VASP jobs, a no-jump trajectory trans-
formation76 was applied to ensure undo automatic wrapping
of atoms into the periodic cell boundary that would otherwise
disrupt calculation of the MSD curve. Figure 11 shows a subd-
iffusive region (approximately 0.02 ps to 0.06 ps), followed by
a diffusive region beginning at approximately 10 ps for some
curves. Table 5 shows the computed self-diffusion coefficients,
compared to an experimental value of 2.299× 10−9 m2/s (Holz
et al. 77). For each ML model, the water self-diffusion coefficient
was determined by a linear fit to the corresponding curve over
the approximate region in which that curve’s log–log slope was
1.0± 10%. All ML models have significant error in predicting
water self-diffusivity, with revPBE + DFT–D3(BJ) the most egre-
gious and r2SCAN + DFT–D4 the most benign. While all models
severely underpredict self-diffusivity, the r2SCAN models still
tend to outperform rSCAN and revPBE models, and within each
r2SCAN or rSCAN model class, DFT–D4 and rVV10 corrections
outperform DFT–D3(BJ) corrections.

Correcting the severe underprediction of self-diffusivity is
among the topics of my ongoing research. One possible cause

Figure 11. Computed MSD curves for all ML models. The gray dash-
dotted line indicates a log–log slope of 1 for easier identification of
the diffusive region.

could be that the ML models have not sufficiently learned re-
pulsive forces that might facilitate greater transport of water
and thus larger self-diffusion coefficients. Including trajectory
frames from BOMD water simulations at higher temperatures
might be necessary to allow the ML model to learn these ad-
ditional interactions. Some studies include water simulated at
temperatures up to 1000 K or even 2000 K.78 While including
training data at temperatures so high above the target tempera-
ture (298.15 K) is not recommended in the VASP documenta-
tion, I am investigating whether including a modest amount of
high-temperature trajectory frames might improve prediction
of water dynamics. To this end, I am currently extending the
thermalization BOMD trajectory that serves as training data
for the VASP ML models to higher temperatures: first to 600 K
at NPT conditions, then to 800 K under NVT conditions (to
avoid periodic cell deformation that happens at those higher
temperatures).

Table 5. Computed water self-diffusion coefficient for each ML model, compared to experiment. tstart and tend define the window over which
linear fitting of the MSD curve is done to extract the self-diffusion coefficient via the Einstein relation. This window is the approximate window in
which the log–log slope of the MSD curve is approximately 1.

Model log10(tstart/ps) log10(tend/ps) Diffusion coefficient [m2/s] Relative error

r2SCAN + DFT–D3(BJ) 1.0 1.12 3.70× 10−10 –83.92%
r2SCAN + DFT–D4 0.83 1.18 4.42× 10−10 –80.77%
r2SCAN + rVV10 0.97 1.13 3.99× 10−10 –82.64%

revPBE + DFT–D3(BJ) 1.2 1.25 2.41× 10−10 –89.51%
rSCAN + DFT–D3(BJ) 0.96 1.16 2.97× 10−10 –87.07%

rSCAN + DFT–D4 1.06 1.19 3.31× 10−10 –85.58%
rSCAN (no correction) 1.19 1.23 2.72× 10−10 –88.19%

rSCAN + rVV10 1.0 1.15 3.35× 10−10 –85.45%
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System density evolution. As an additional check of the stabil-
ity and fidelity of the simulations, I computed the evolution of
system density throughout the 20 ps of NPT simulation of bulk
water under each ML model. Figure 12 shows these computed
densities as a function of simulation time.

Figure 12. Computed system density over the entire 20 ps NPT tra-
jectory at 298.15 K and 1 atm. The gray dash-dotted line shows the
experimental density of 1 g/mL at 25 ◦C. Slight curve smoothing has
been applied for readability.

The results are surprising given the relative performance of each
ML model in other analyses. All ML models predict a sharp in-
crease in density (collapse in box size) beyond what is expected
for liquid water. r2SCAN + rVV10 most overpredicts system
density, followed by rSCAN with DFT–D3(BJ) or rVV10. r2SCAN
+ DFT–D3(BJ) has the least severe density overprediction of the
meta-GGA simulations that apply dispersion corrections. Sur-
prisingly, revPBE + DFT–D3(BJ) maintains the density closest
to experiment throughout all 20 ps, even as this model severely
underperforms in predicting water structure and self-diffusivity.

This surprising ranking in model performance with respect
to predicted system density is another reason I am investigat-
ing adding more high-temperature trajectory frames to each
model. Including more repulsive forces may allow some of the
dispersion-corrected models to approach the performance of
revPBE + DFT–D3(BJ) while still maintaining their relatively
superior prediction of water structure and self-diffusivity.

2.2 Accelerated BOMD using polarized atomic orbital optimiza-

tion

Another current but nascent research effort involves a relatively
new feature of the CP2K software package: the ability to create
optimized, reduced basis sets representing the polarized atomic
orbitals (PAOs) of atoms in a system. This framework, called
PAO–ML, approaches the task of accelerated MD calculations
from a perspective entirely different from the efforts described

previously. Most strategies to accelerate BOMD calculations
using ML models focus on replacing the entire first-principles
calculation (e.g., of electronic structure) with a surrogate cal-
culator implemented as a ML model. The ML model is thus
trained on atomic positions, atom types, and cell lattice vectors
to directly and much more cheaply predict the system energy,
atomic forces, and cell stresses than would normally result from
a first-principles electronic structure calculation. In contrast, the
PAO approach proposes accelerating rather than replacing DFT
computation. This is accomplished by strategically reducing the
basis set of functions representing the system’s electrons such
that the calculated electronic structure is substantially the same
as that obtained during a normal DFT calculation, but at a much
lower computational cost.79 Accelerating BOMD calculations is
then enabled by training a ML model to correctly but cheaply
predict this reduced basis set for each frame’s atomic positions,
atom types, and cell lattice vectors (see Figure 13).

In theory, the PAO–ML approach is more versatile than tradi-
tional MLFFs because training a single ML model to predict the
reduced basis sets immediately enables accelerated calculation
of any system property that DFT can predict. Thus, a single ML
model would enable quick DFT prediction of standard proper-
ties needed for MD, such as system energies, atomic forces, and
cell stresses, as well as additional properties such as the Fermi
energy or dipole moment. Additionally, PAO optimization may
require less training data to become transferable to different
chemical systems or different system geometries than would be
required for a traditional MLFF.

In practice, however, the utility of the PAO–ML approach to
my systems is unclear. The current implementation in CP2K
requires the use of constrained Kohn–Sham equations, mean-
ing that Mn and similar elements cannot receive proper spin-
polarization treatment. Additionally, the PAO–ML framework
requires multiple rounds of potentially expensive optimization.
The first round of optimization produces the variationally op-
timized basis set that serves as the output labels for the ML
model to be trained, and the second round of optimization is
the training of the ML model itself to predict these variationally
optimized basis sets. More significantly, training the ML model
itself requires the user to define the loss function, for which the
CP2K manual suggests using the variance in computed system
energy or atomic forces when compared to the results one would
get with a normal DFT calculation. But this approach encodes
into the ML model a preference for greater accuracy of one or a
few DFT-obtained properties over the rest. Such an approach
undermines the claim that the PAO–ML approach produces a
globally applicable DFT calculator that can be used to cheaply
evaluate any DFT-computable property. Finally, the acceleration
afforded by this method is unclear. While the claimed 50x accel-
eration of PAO–ML-enabled MD calculations (∼ 0.05 ns/day)
over BOMD is greater than the acceleration offered by VASP’s
ML models (∼ 0.02 ns/day), it may still be much slower than
a strategically trained NequIP/Allegro or DeePMD-kit model
(∼ 0.50 ns/day). While the PAO–ML approach is interesting, it
currently seems less promising for modeling a Li2MnCl4 ·x H2O
electrolyte and other similar systems of interest.
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Figure 13. PAO–ML schematic, reproduced from Figure 1 in Schütt and VandeVondele 79 . The green box outlines the training task for the ML
model: cheaply transforming an atomic geometry into a reduced basis set.

3 Conclusion

The first year of my postdoctoral appointment has been reward-
ing and enlightening. I have focused on learning the theory and
practice of molecular dynamics simulations at length and time
scales beyond those of the catalyst and surface science calcula-
tions that defined my graduate work. In the coming year, I hope
to identify a ML-accelerated MD methodology that is successful
in predicting the key bulk properties of liquid water, LiCl ·x H2O,
Li2ZnCl4 ·x H2O, and ultimately Li2MnCl4 ·x H2O. Results from
accelerated MD calculations, coupled with experimental mea-
surements of Li2MnCl4 ·x H2O electrolytes, will ultimately lead
to one or more publications detailing design guidelines for these
electrolytes and their evaluation as capable beyond-Li battery
chemistries. I look forward to continuing this work and sharing
further results in the next year of my tenure.
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