





#### Thermodynamic Stability and Anion Ordering of Perovskite Oxynitrides

**Samuel D. Young**; Amitava Banerjee; Bryan Goldsmith; Ghanshyam Pilania ACS Fall 2022 — 23 Aug 2022



samueldy@umich.edu

#### Perovskite oxynitrides (PONs) are important for many applications



 $\sqrt{2} \times \sqrt{2} \times 2$  supercell

Aguiar, R. et al. Dyes and Pigments **76**, 70–75 (2008).

Higashi, M., et al. Chem. Mater. **21**, 1543–1549 (2009).

#### The structure and composition of a PON strongly impacts its performance and stability.

Fuertes, A. Chemistry and applications of oxynitride perovskites. J. Mater. Chem. 22, 3293–3299 (2012).

![](_page_1_Picture_7.jpeg)

## PON structure, anion ordering, and stable compositions are not well explored

![](_page_2_Figure_1.jpeg)

![](_page_2_Picture_2.jpeg)

# Goal: determine thermodynamic stability and anion ordering in $ABO_2N$ and $ABON_2$ perovskite oxynitrides

#### **Our workflow**

![](_page_3_Figure_2.jpeg)

![](_page_3_Picture_3.jpeg)

## Select cation pairs

We build an experimental stability hull from known stable PONs.<sup>[1, 2]</sup>

![](_page_4_Figure_2.jpeg)

Stoichiometry

ABO<sub>2</sub>N

ABON<sub>2</sub>

Goldschmidt tolerance factor

 $[(r_{\rm A} + r_{\rm O})^8 (r_{\rm A} + r_{\rm N})^4]^{1/12}$ 

 $\sqrt{2}[(r_{\rm B}+r_{\rm O})^4(r_{\rm B}+r_{\rm N})^2]^{1/6}$  $[(r_{\rm A} + r_{\rm O})^4 (r_{\rm A} + r_{\rm N})^8]^{1/12}$ 

 $\frac{1}{\sqrt{2}[(r_{\rm B}+r_{\rm O})^2(r_{\rm B}+r_{\rm N})^4]^{1/6}}$ 

Octahedral factor

 $r_{\rm B}$ 

 $\overline{(r_{\rm O}^4 r_{\rm N}^2)^{1/6}}$ 

 $r_{\rm B}$ 

 $\overline{(r_{\rm O}^2 r_{\rm N}^4)^{1/6}}$ 

1. Li, W., Ionescu, E., Riedel, R. & Gurlo, A. Can we predict the formability of perovskite oxynitrides from tolerance and octahedral factors? J. Mater. Chem. A 1, 12239 (2013). 2. Wang, H.-C., Schmidt, J., Botti, S. & L. Marques, M. A. A high-throughput study of oxynitride, oxyfluoride and nitrofluoride perovskites. J. Mater. Chem. A 9, 8501–8513 (2021).

![](_page_4_Picture_4.jpeg)

SrNbO<sub>2</sub>N

## We aim to identify preferred anion orderings

• For  $\sqrt{2} \times \sqrt{2} \times 2$  supercell, there are 32 total symmetrically distinct anion orderings.<sup>[1]</sup>

![](_page_5_Figure_2.jpeg)

![](_page_5_Picture_4.jpeg)

#### We identified anion orderings that are consistently stable across 16 cation pairs

 $\Delta E_{\text{DFT}} = 3.61 \text{ meV/atom}$ above minimum-

energy ordering for

this cation pair

![](_page_6_Picture_1.jpeg)

ordering-0  $\mathbf{O}$ N

![](_page_6_Figure_3.jpeg)

DFT

B

Ranking for single cation pair

![](_page_6_Figure_5.jpeg)

Anion ordering

![](_page_6_Picture_7.jpeg)

### Calculate degree of *cis* ordering

![](_page_7_Figure_1.jpeg)

![](_page_7_Picture_2.jpeg)

ordering-30 0% global cis bonding Cis counts: 0, 0, 0, 0 0/4 octahedra with cis bonds

![](_page_7_Figure_5.jpeg)

ordering-31 67% global cis bonding Cis counts: 4, 0, 4, 0 2/4 octahedra with cis bonds

Most favorable Least favorable

В

M

![](_page_7_Picture_8.jpeg)

# A global *cis* fraction of 1 leads to the most stable anion ordering, for all cation pairs

![](_page_8_Figure_1.jpeg)

Correlations not strong across all cation pairs, but high fraction of global cis ordering is important.

#### We screen 295 PON compounds and group by stability above convex hull

![](_page_9_Figure_1.jpeg)

![](_page_9_Picture_3.jpeg)

#### DFT-predicted hull identifies new possible stable PON compounds for exploration

- B = Re compounds
- A = La, Ca, Pb compounds
- Many stable compounds are outside southeast border of experimental stability hull.

![](_page_10_Figure_4.jpeg)

## We generate a Pourbaix diagram for CaReO<sub>2</sub>N

![](_page_11_Figure_1.jpeg)

Synthesis could require very high partial pressures of NH<sub>3</sub> or N<sub>2</sub> precursor.

![](_page_11_Picture_3.jpeg)

## We generate a Pourbaix diagram for LaTaO<sub>2</sub>N

![](_page_12_Figure_1.jpeg)

muN = 0

#### LaTaO<sub>2</sub>N should be much easier to synthesize with lower pressures and NH<sub>3</sub> flowrates.

![](_page_12_Picture_4.jpeg)

![](_page_13_Figure_0.jpeg)

Next steps: synthesis!! Collaborating with LANL experimentalists making CaReO<sub>2</sub>N, LaTaO<sub>2</sub>N.

![](_page_13_Picture_2.jpeg)

#### Acknowledgments

![](_page_14_Picture_1.jpeg)

**Bryan Goldsmith** Chemical Engineering University of Michigan

![](_page_14_Picture_3.jpeg)

![](_page_14_Picture_4.jpeg)

**Bianca Ceballos** Materials Physics and Applications Los Alamos National Laboratory

![](_page_14_Picture_6.jpeg)

**Amitava Banerjee** Metallurgical & Materials Engineering IIT-Jodhpur

**Questions?** 

![](_page_14_Picture_8.jpeg)

![](_page_14_Picture_9.jpeg)

![](_page_14_Picture_10.jpeg)

![](_page_14_Picture_11.jpeg)

**Ranganchary Mukundan** Materials Physics and Applications Los Alamos National Laboratory

![](_page_14_Picture_13.jpeg)

**Ghanshyam Pilania** Materials Science and Technology

![](_page_14_Picture_15.jpeg)

**Jiadong Chen** Materials Science University of Michigan

![](_page_14_Picture_17.jpeg)

Wenhao Sun Materials Science University of Michigan

![](_page_14_Picture_19.jpeg)

J. Robert Beyster Computational **Innovation Graduate Fellows Program** 

![](_page_14_Picture_21.jpeg)

![](_page_14_Picture_22.jpeg)

samueldy.github.com Read our recent perspective!

![](_page_14_Picture_23.jpeg)