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Nitrate is a Major Water Pollutant

e Human N contribution to
environment: 108 tonnes/yrt"?

- Largest source: ammonia
fertilizer (> 100 Tg N)

- Makes NO;™ is one of the most
widespread water pollutants.

« Adverse health effects:>*
- Methemoglobinemia
- Ovarian and thyroid cancers

versus healthy patient (right) [5].

Methemoglobinemia patient (left) l
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Electrocatalytic Nitrate Reduction (NO:RR) is a Sustainable
Route for Nitrate Remediation

NO; o + 2H' + 26" 2 NO,, + H,0,)  E°=0.85V
NO5 g + 3H" + 2¢” = HNOyg + Hy0 E°=0.89V .
NO,- (az)+4H++3e = NOy, + 2H,0;, E0=0.96V * Can be powered with
NO;3 (o) + 7H" + 6™ = NH,0H,) + 2H,0() E°=0.67V renewable electricity
NO5 (o + 9H" + 86~ = NH," ., + 3H,0,, E°=0.82V , .
2N03’(aq) +10H* + 8e = Nzo(g) +5H,0,, E°=112V % * Don’t need continuous
2NOj3 (g + 12H" + 10e” 2 Ny + 6H,0;  E°=1.25V o= reductant (H,) stream
(@]
+ll| ° Many benign or value-added
® @ 2 products possible, especially
N2 NQO % NH3/NH4NO3
@ 3 W = 0 Challe.nge: need more active,
‘ HNO selective, and stable
& NH4+ 2

electrocatalysts.
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Objective: Verify Whether Pt;Ru Alloy Predicted Using Pure Metal
Microkinetics is Active Towards NOs;RR

* Previous computational study of pure
metals found N, O binding energies
as thermodynamic descriptors.

» Also predicted Pt;Ru alloys to be very
active at 0 V.I'2

* More favorable potential: 0.1V to
avoid competition with HER.

* Questions:

- Is Pt;Ru still active at 0.1V?

- Can we use pure metal microkinetics
to predict alloy activity?
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[2] All potentials are relative to the reversible hydrogen electrode (RHE).



Synthesis of Experimental Catalysts

*  Five Pt,Ru,/C catalysts synthesized . — ﬁ o o pestingend
using a NaBH. reduction technique: . v

Pt1oo/C, PtgoRUw/C, Pt78RU22/C, carbon support + NaBH, Dry overnight ﬁ

in 80 °C

PtezRU37/C, and PtquUSZ/C.

* Synthesis created nanoparticles of
~3-6 nm in diameter. 160F 0 ag

« No significant phase or surface pieie L
segregation observed. £ ,

« Stable repeated cyclic SH f
voltammagrams of prepared 40
electrodesg suggestspsta?bility under L ﬂ@k
electrochemical conditions. TR

Particle size (nm)
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Steady-state Current Density Results

* NOsRR reduction current was
normalized to ECSA, calculated using
both Hyrp and Cuypp methods.

« By both metrics, Pt;sRu/C is the
most active towards NOs;RR at 0.1 V.

* Results suggest that Pt;Ru/C is
indeed active (~6 times as much as
Pt/C)at01VaswellasatOV.

* PtsRuy/C estimated to be half as
expensive as Rh/C and a third as
expensive as Pt/C to remediate NOs5™.
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Selectivity Results

* Faradaic efficiency measured using
. . _JAmmonia[]Nitrite] T Other Products|
lon chromatography and indophenol 100

f © - ! . I

blue methods. : . T :
« All alloy materials show 2= 93% X 8of i
Faradaic efficiency towards NHs. % | S 5 5 ]

*  Pt\Ru,/C shows reliably high e S f é"‘" f
selectivity towards a single Y ol & & 3 3 |

desirable NO:RR product. S =
5 20} |
0
Catalysts
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Computational Modeling of PtiRu, catalysts

 How to control surface
compositions? Alloy the surface.

« Computed N, O binding energies
using density functional theory.

 Computed pure metal volcano plot
for 0.1V vs. RHE.

<

AW AW AW,

T
1

TN

i
f

 Computed NOs* - NO,* + O* barrier. Pt
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Alloy computational trends match experimental trends
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We hypothesize that the maximum in activity arises from a shift in the rate-
determining step from nitrate dissociation to another step.

395, 143-154 (2021).
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Alloy computational trends match experimental trends

NO,-O Scaling Relationship

Oxygen binding energy / eV
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Pure metal volcano plot can predict alloy activity with first-approximation accuracy.
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Conclusions and Implications ¢ .[t™
2.20. Ru,; C
* PtRu (PtsRux/C) is active for NOsRR at 0.1 > m Plefier]
V vs. RHE (6 times more than Pt/C), and 5| Pl
most active of all alloy compositions. 5 1| —
» Electrochemically stable, > 93% Faradaic 5_50_0-1”5. - s
efficiency towards NHs, and three times Su Ry Contont (2170

(]

cheaper than using Pt/C.

* Pure metal microkinetics rationalize activity 5 /“/"‘.
trends of alloys (PtRuy/C). For Yo \
 Can potentially accelerate screening for S y
other performance alloy electrocatalysts. 8o _
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