

Platinum-Ruthenium Alloys for Efficient Aqueous Nitrate Reduction

Samuel D. Young 16 Nov 2021

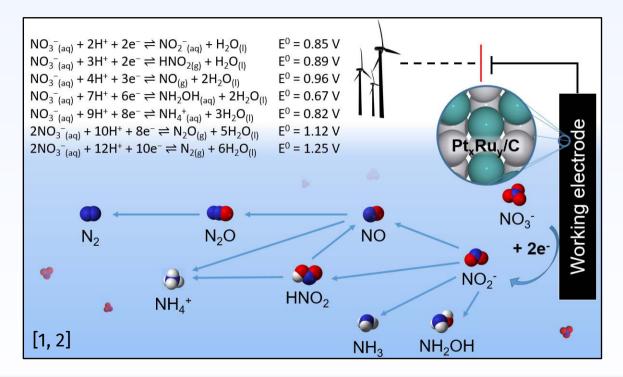
Wang, Z., Young, S. D., Goldsmith, B. R. & Singh, N. Increasing electrocatalytic nitrate reduction activity by controlling adsorption through PtRu alloying. *Journal of Catalysis* **395**, 143–154 (2021).

samueldy@umich.edu

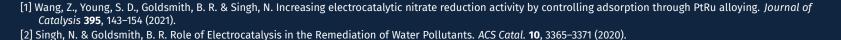
UNIVERSITY OF MICHIGAN

Nitrate is a Major Water Pollutant

- Human N contribution to environment: 10⁸ tonnes/yr^[1, 2]
 - Largest source: ammonia fertilizer (> 100 Tg N)
 - Makes NO₃⁻ is one of the most widespread water pollutants.
- Adverse health effects:^[3-5]
 - Methemoglobinemia
 - Ovarian and thyroid cancers

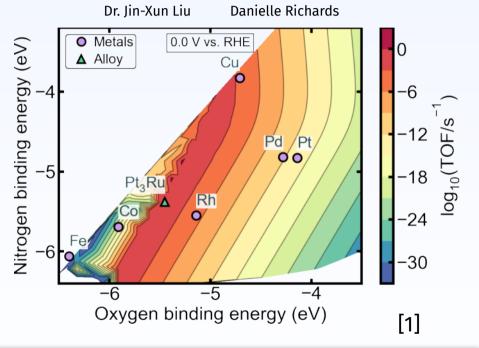

Fields, S. Environmental Health Perspectives **112**, A556–A563 (2004).
 Duca, M. & Koper, M. T. M. Energy Environ. Sci. **5**, 9726–9742 (2012).
 Farkas, J. Methemoglobinemia in Internet Book of Critical Care (2019).

4. Xie, L. et al. Oncotarget 7, 56915–56932 (2016).


5. Soliman, D. S. & Yassin, M. Congenital methemoglobinemia misdiagnosed as polycythemia vera: Case report and review of literature. *Hematol Rep* **10**, (2018).

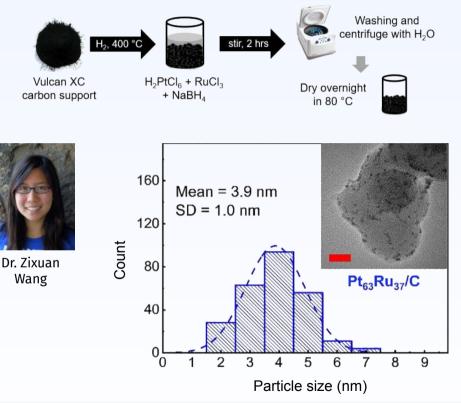
Electrocatalytic Nitrate Reduction (NO₃RR) is a Sustainable Route for Nitrate Remediation

- Can be powered with renewable electricity
- Don't need continuous reductant (H₂) stream
- Many benign or value-added products possible, especially NH₃/NH₄NO₃.
- Challenge: need more active, selective, and stable electrocatalysts.

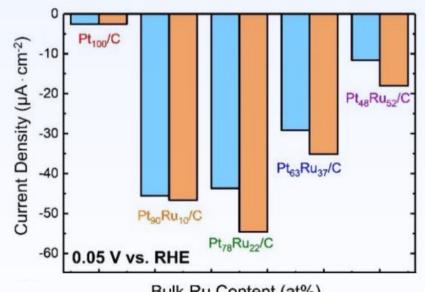


Objective: Verify Whether Pt₃Ru Alloy Predicted Using Pure Metal Microkinetics is Active Towards NO₃RR

- Previous study of pure metals found N, O binding energies as thermodynamic descriptors.
- Pt₃Ru alloys predicted to be promising.^[1, 2]
- Questions:
 - Is Pt₃Ru more active than Pt?
 - Can we systematically tune NO₃RR kinetics through alloying?
 - Can we use *pure metal* microkinetics to predict *alloy* activity?

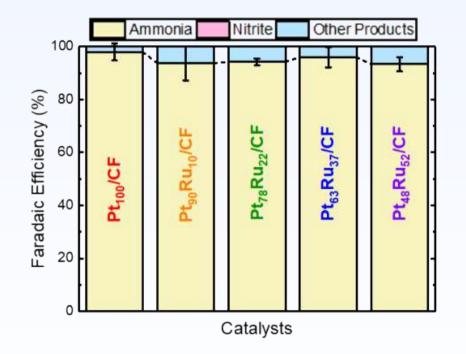


Synthesis of Experimental Catalysts


- Five Pt_xRu_y/C catalysts synthesized using a NaBH₄ reduction technique:
 - Pt₁₀₀/C, Pt₉₀Ru₁₀/C, Pt₇₈Ru₂₂/C, Pt₆₂Ru₃₇/C, and Pt₄₈Ru₅₂/C.
- Synthesis created catalyst crystallites of ~3–6 nm in diameter.
- No significant phase or surface segregation observed.
- Stable repeated cyclic voltammagrams of prepared electrodes suggests stability under electrochemical conditions.

Steady-state Current Density Results

- NO₃RR reduction current was normalized to ECSA, calculated using both H_{UPD} and Cu_{UPD} methods.
- By both metrics, Pt₇₈Ru₂₂/C is the most active towards NO₃RR at 0.1 V.
- Results suggest that Pt₃Ru/C is indeed active (~6 times as much as Pt/C) at 0.1 V as well as at 0 V.
- Pt₇₈Ru₂₂/C estimated to be half as expensive as Rh/C and a third as expensive as Pt/C to remediate NO₃⁻.



Bulk Ru Content (at%)

Selectivity Results

- Faradaic efficiency measured using ion chromatography and indophenol blue methods.
- All alloy materials show ≥ 93%
 Faradaic efficiency towards NH₃.
- Pt_xRu_y/C shows reliably high selectivity towards a single desirable NO₃RR product.

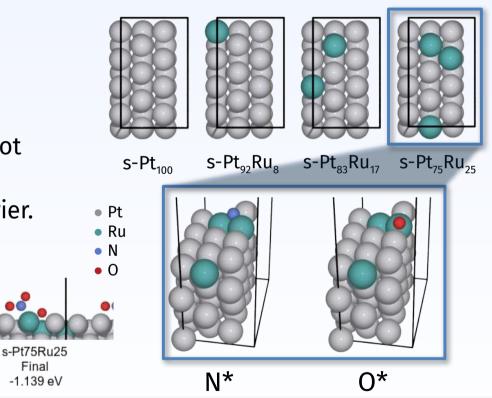
Computational Modeling of Pt_xRu_y catalysts

- How to control surface compositions? Alloy the surface.
- Computed N, O binding energies using density functional theory.
- Computed pure metal volcano plot for 0.1 V vs. RHE.
- Computed $NO_3^* \rightarrow NO_2^* + O^*$ barrier.

٥Ŏ

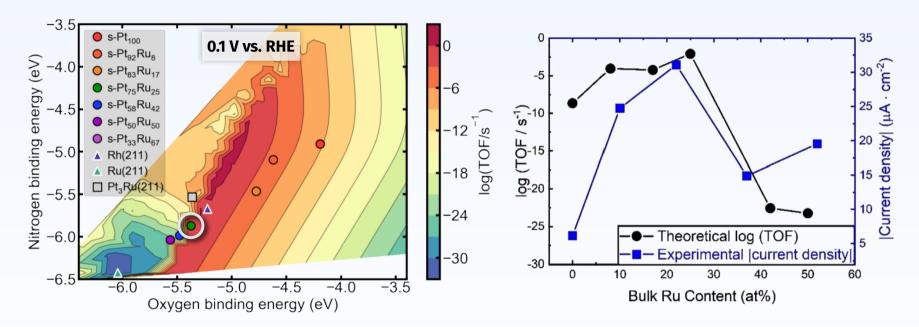
s-Pt75Ru25

Initial


0.000 eV

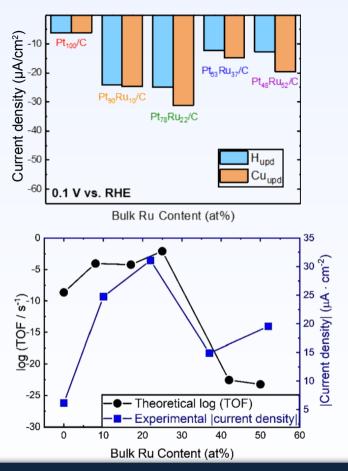
 $NO_3^* \rightarrow NO_2^* + O^*$ on s-Pt₇₅Ru₂₅

s-Pt75Ru25


Transition

0.431 eV

Alloy Trends Mirror Metal Trends



We hypothesize that the maximum in activity arises from a shift in the ratedetermining step from nitrate dissociation to another step.

Conclusions and Implications

- Pt₃Ru (Pt₇₈Ru₂₂/C) is active for NO₃RR at 0.1
 V vs. RHE (6 times more than Pt/C), and most active of all alloy compositions.
- Electrochemically stable, > 93% Faradaic efficiency towards NH₃, and three times cheaper than using Pt/C.
- Pure metal microkinetics rationalize activity trends of alloys (Pt_xRu_y/C).
- Can potentially accelerate screening for other performant alloy electrocatalysts.

Acknowledgements

- Zixuan Wang for experimental work
- Dr. Jin-Xun Liu and Danielle Richards for previous work on pure metals
- Prof. Bryan R. Goldsmith Advisor
- Michigan Institute for Computational Discovery and Engineering
- National Energy Research Scientific Computing Center
- Advanced Research Computing Technology Services

Read our paper in Journal of Catalysis: DOI: 10.1016/j.jcat.2020.12.031

Also read our paper on Rh sulfides: DOI: 10.1039/D1CY01369F

Dr. Zixuan Prof. Bryan R. Wang Goldsmith

R. Dr. Jin-Xun Liu

Danielle Richards

Questions?

