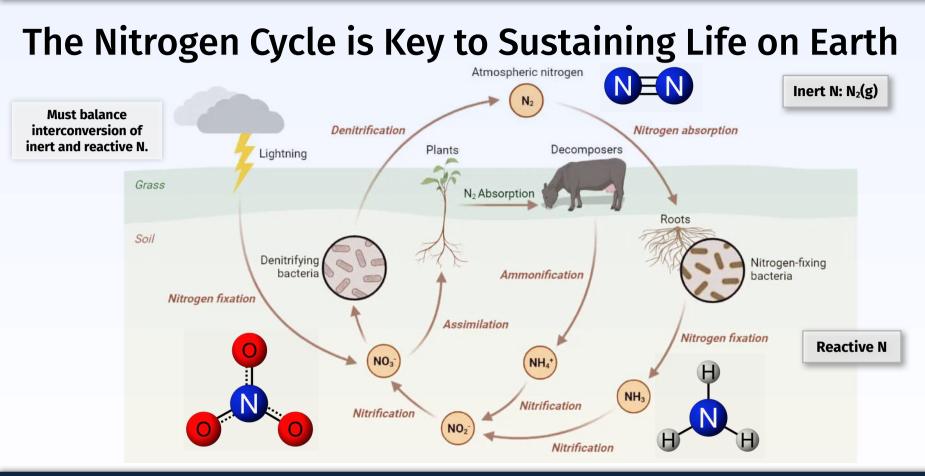


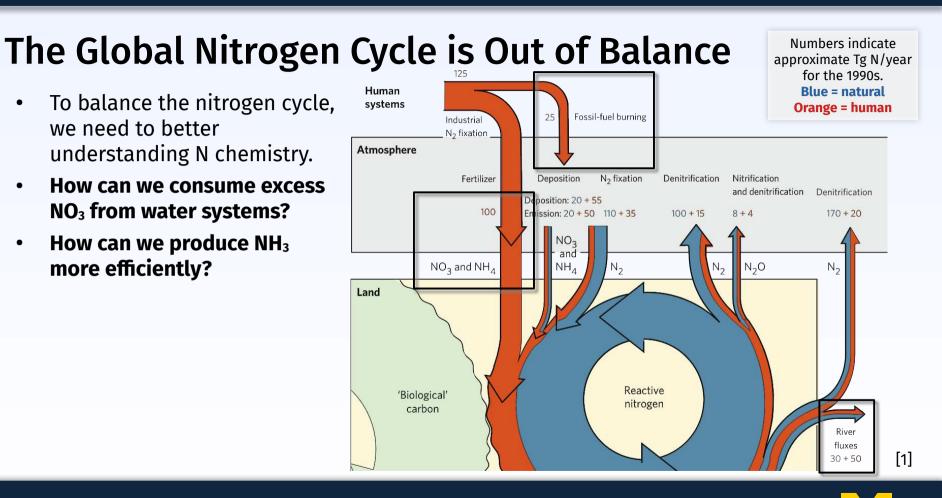
Heterogeneous Electrocatalysts for Aqueous Nitrate Reduction and Nitrogen Chemistry

Committee: Prof. Bryan Goldsmith (Chair) Prof. Rohini Bala Chandran (Cognate) Prof. Johannes Schwank Prof. Nirala Singh


Samuel D. Young

Oral Defense – 07 Aug 2023

samueldy@umich.edu



http://cheresearch.engin.umich.edu/goldsmith/

2

•

•

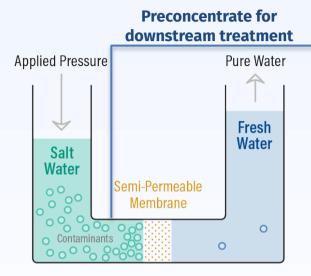
Why Should We Care About Lowering Terrestrial Nitrate Levels?

Nitrate, NO₃⁻

Nitrate is a major water pollutant

- Human N contribution to environment: 10⁸ tonnes/yr.^[1, 2]
 - Largest source: ammonia fertilizer (> 100 Tg N).
 - NO₃⁻ is one of the most widespread water pollutants.

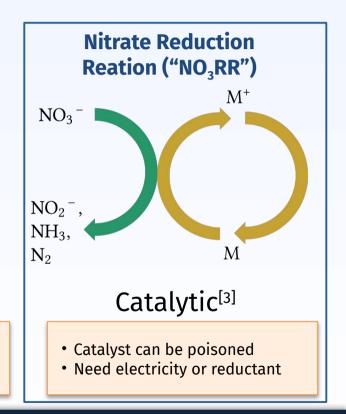
- Adverse health effects:^[3-5]
 - Methemoglobinemia.
 - Ovarian and thyroid cancers.
- Adverse environmental, economic effects:^[2]
 - Eutrophication and aquatic death.
 - Impacts to fishing economies.


1. Fields, S. Environmental Health Perspectives **112**, A556–A563 (2004). 2. Duca, M. & Koper, M. T. M. Energy Environ. Sci. **5**, 9726–9742 (2012). 3. Farkas, J. Methemoglobinemia in Internet Book of Critical Care (2019).

4. Xie, L. et al. Oncotarget **7**, 56915–56932 (2016).

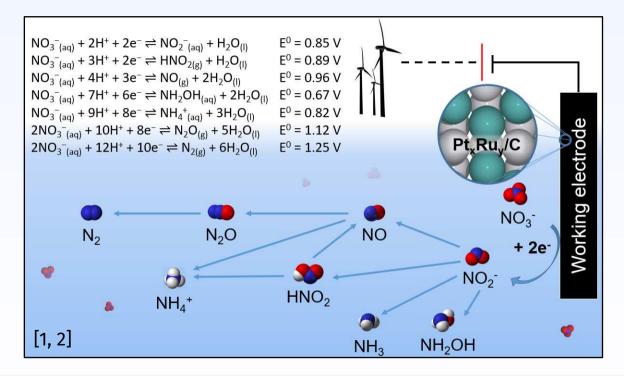
5. Soliman, D. S. & Yassin, M. Congenital methemoglobinemia misdiagnosed as polycythemia vera: Case report and review of literature. *Hematol Rep* **10**, (2018).

Approaches to Balance Nitrogen Cycle Through NO3⁻ Removal



Physical^[1]

- Produces concentrated waste
- Need regular membrane/resin purging/regeneration

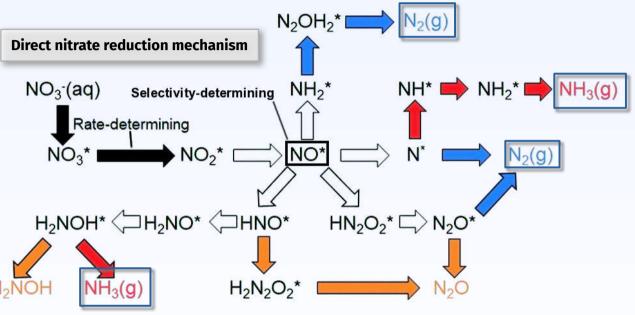


- Need carbon source and controlled conditions
- Can produce biotoxins

PureTec Industrial Water. What is Reverse Osmosis? https://puretecwater.com/reverse-osmosis/what-is-reverse-osmosis
 Distek, Inc. BIOne Single-Use Bioreactor System. https://www.distekinc.com/products/bione-single-use-bioreactor-system/
 Adapted from Hasnat, M. et al., J. Ind. Eng. Chem. 28 (2015) 131–137

Electrocatalytic Nitrate Reduction (NO₃RR) is a Sustainable **Route for Nitrate Remediation**

- Could be powered with renewable electricity
- Many benign or value-added products possible, especially NH₃, NH₄NO₃.
- Challenge: need active, selective, and stable electrocatalysts.



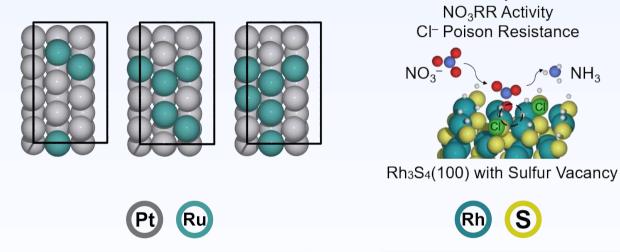
[1] Wang, Z., Young, S. D., Goldsmith, B. R. & Singh, N. Increasing electrocatalytic nitrate reduction activity by controlling adsorption through PtRu alloying. Journal of Catalysis 395, 143-154 (2021).

[2] Singh, N. & Goldsmith, B. R. Role of Electrocatalysis in the Remediation of Water Pollutants. ACS Catal. 10, 3365-3371 (2020).

NO3RR Mechanism on Metals Informs Catalyst Design

- On transition metals, rate-limiting step is^[1] $NO_3^* \rightarrow NO_2^* + O^*$.
- Active catalysts should hold onto NO₃⁻ tightly.
- A low $NO_3^* \rightarrow NO_2^* + O^*$ barrier is important.

Pt-group metal activities: Rh > Ru > Ir > Pd ≈ Pt Coinage metal activities: Cu > Ag > Au

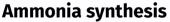


I Focus on Three Electrocatalyst Materials to Help Balance the Nitrogen Cycle Rh_xS_v/C

NO₂

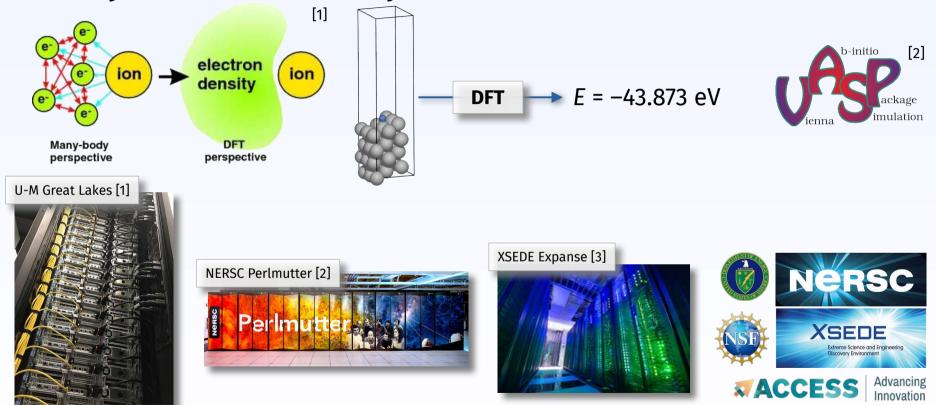
NO₃RR Activity CI- Poison Resistance

NH₃



Platinum-Ruthenium Alloys

Rhodium Sulfides


Nitrate reduction

[1] Wang, Z., Young, S. D., Goldsmith, B. R. & Singh, N. Journal of Catalysis 395, 143–154 (2021). [2] Richards, D., Young, S. D., Goldsmith, B. R. & Singh, N. Catal. Sci. Technol. 11, 7331–7346 (2021). [3] Young, S. D., Chen, J., Sun, W., Goldsmith, B., Pilania, G. ACS Chemistry of Materials (2023). https://doi.org/10.1021/acs.chemmater.3c00943.

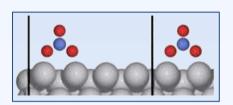
Density Functional Theory (DFT) Simulates Electron Behavior



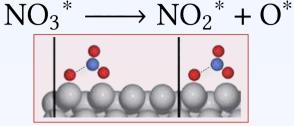
[1] Bechstedt, F. (2015). Density Functional Theory. In: Many-Body Approach to Electronic Excitations. Springer Series in Solid-State Sciences, 181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44593-8_5

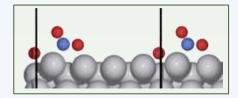
[2] Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. *Physical Review B* **1996**, 54 (16), 11169–11186. https://doi.org/10.1103/PhysRevB.54.11169.

DFT Can Calculate Adsorption Energies



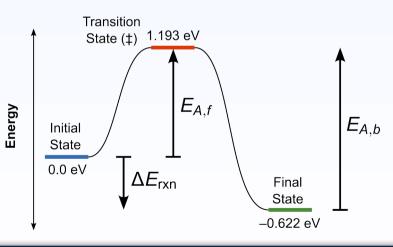
The VASP Site. https://www.vasp.at/index.php/about-vasp/59-about-vasp
 Wellendorff, J. et al. Phys. Rev. B 85, 235149 (2012).


[3] Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **77**, 3865–3868 (1996).
[4] Liu, J.-X., Richards, D., Singh, N. & Goldsmith, B. R. *ACS Catal.* **9**, 7052–7064 (2019).



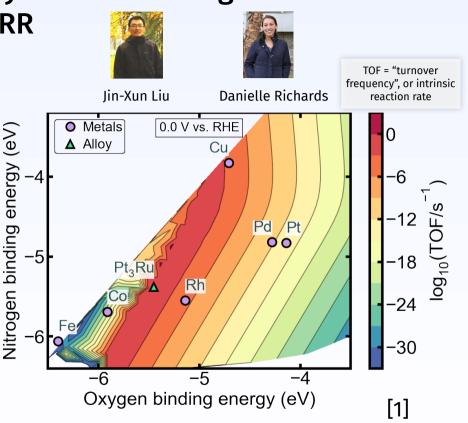
DFT Can Calculate Activation Barriers

Initial State ("I")



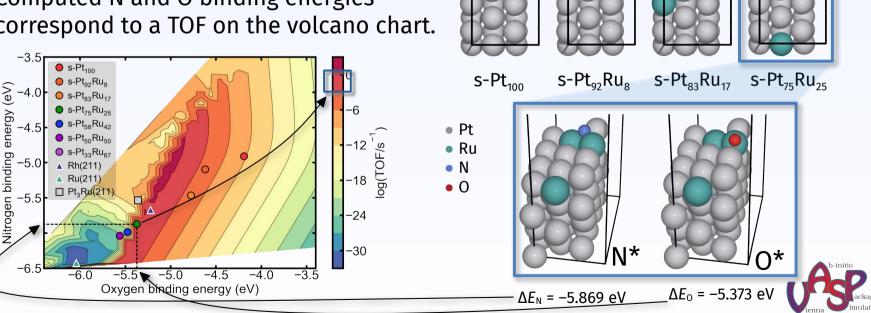
Transition State ("+") Fina

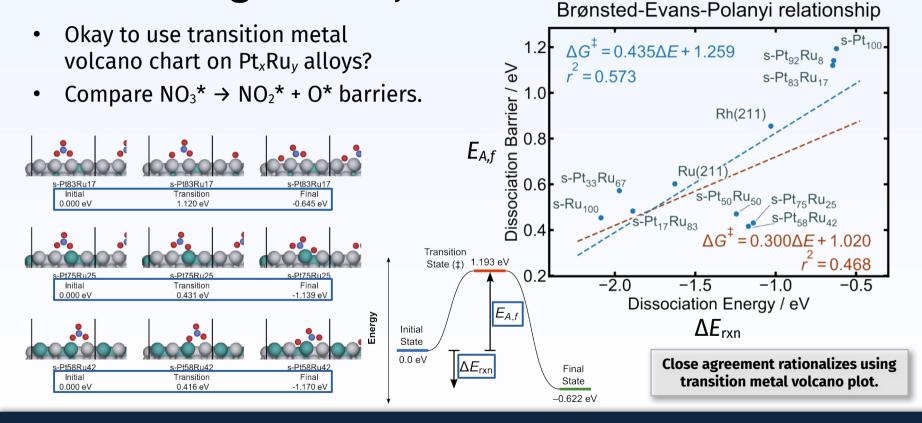
Forward barrier: $E_{A,f} = E_{\ddagger} - E_I$ Backward barrier: $E_{A,b} = E_{\ddagger} - E_F$ Reaction energy: $\Delta E_{rxn} = E_F - E_I$


PtRu Alloys for Nitrate Reduction

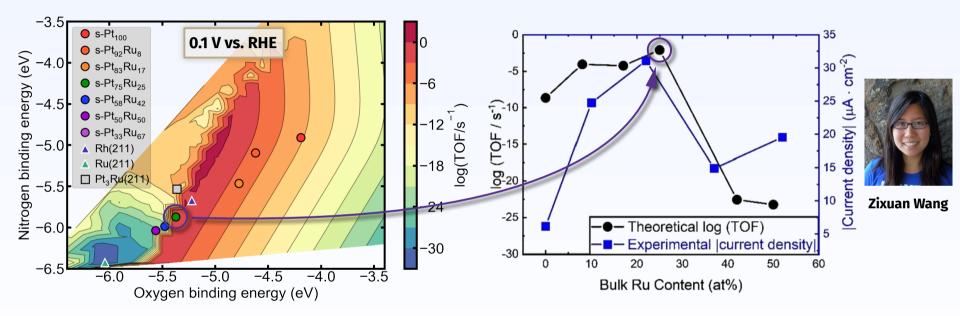
NO₃⁻ adsorbed on PtRu surface alloys

Objective: Verify Whether Pt₃Ru Alloy Predicted Using Pure Metal Microkinetics is Active Towards NO₃RR


- Previous study of pure metals found N, O binding energies as thermodynamic descriptors.
- Pt₃Ru alloys predicted to be promising.^[1, 2]
- Questions:
 - Is Pt₃Ru more active than Pt?
 - Can we systematically tune NO₃RR kinetics through alloying?
 - Can we use *pure metal* microkinetics to predict *alloy* activity?

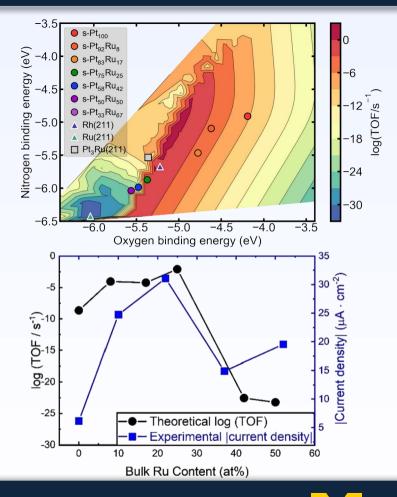

DFT Modeling of Pt_xRu_y Adsorption Energies

- How to control surface compositions? • Alloy the surface.
- Computed N and O binding energies • correspond to a TOF on the volcano chart.



DFT Modeling of Pt_xRu_y Nitrate Dissociation Barriers

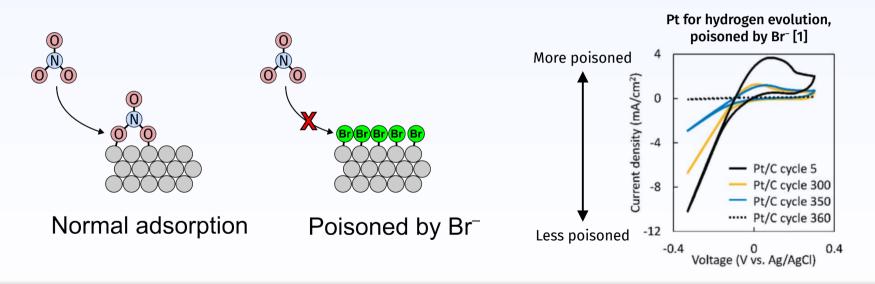
Tuning PtRu Composition Systematically Changes NO₃RR Activity



We hypothesize that the maximum in activity arises from a shift in the rate-determining step from nitrate dissociation to another step.

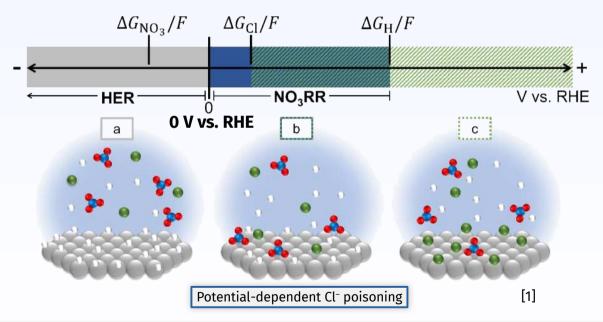
Conclusions and Implications

- Pt₃Ru (Pt₇₈Ru₂₂/C) is more active for NO₃RR than Pt/C.
- Pure metal microkinetics rationalize activity trends of alloys (Pt_xRu_y/C).
- One can potentially save calculations when screening alloy electrocatalysts.

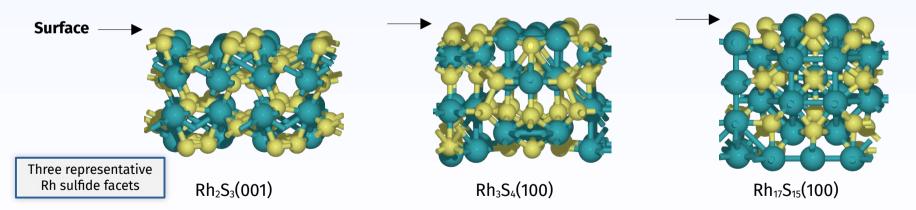

Rh Sulfide Catalysts for Nitrate Reduction

*Rh*₁₇*S*₁₅(100) *surfaces*

Halide Poisoning Limits Catalyst Effectiveness


- Poisoning: sites on surface blocked by non-reactant molecules, decreasing activity.
- Cl⁻, Br⁻, I⁻, and other halides are common in concentrated wastewater.
- Halides poison electrocatalysts for many electrocatalytic reactions.

Chloride (Cl⁻) Poisons Many Potential NO₃RR Catalysts


- Cl⁻ adsorption competes with nitrate adsorption at NO₃RR potentials.^[1]
- Even trace amounts of Cl⁻ can poison electrocatalysts.^[2]

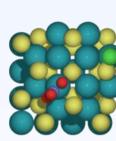
Objective: Understand Rh Sulfide NO₃RR Activity and Cl⁻ Poisoning

- Rh active for NO₃RR.^[1-2] Sulfides often resist halide poisoning.^[3-4]
- Hypothesis: Rh sulfides will be active and resistant to Cl⁻ poisoning.
- Questions:
 - What is the NO₃RR mechanism on Rh sulfides?
 - How does the presence of Cl⁻ affect NO₃RR performance?

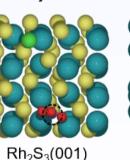
Liu, J.-X., Richards, D., Singh, N. & Goldsmith, B. R. Activity and Selectivity Trends in Electrocatalytic Nitrate Reduction on Transition Metals. ACS Catal. 9, 7052–7064 (2019).
 Dima, G. E., de Vooys, A. C. A. & Koper, M. T. M. Electrocatalytic reduction of nitrate at low concentration. Journal of Electroanalytical Chemistry 554–555, 15–23 (2003).
 Ivanovskaya, A. et al. Transition Metal Sulfide Hydrogen Evolution Catalysts for Hydrobromic Acid Electrolysis. Langmuir 29, 480–492 (2013).
 Singh, N. et al. Stable electrocatalysts for autonomous photoelectrolysis of hydrobromic acid using single-junction solar cells. Energy Environ. Sci. 7, 978–981 (2014).

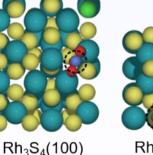
DFT Modeling of Rh Sulfide Surfaces

- Rh sulfides are modeled using Rh₂S₃(001), Rh₃S₄(100), and Rh₁₇S₁₅(100).^[1]
- Density functional theory used to calculate binding energies and barriers.
- Central questions to answer:
- (1) Do Rh_xS_y facets break unfavorable NO₃⁻−Cl⁻ scaling relationship?
- (2) What is the mechanism on Rh_xS_y?
 (3) Do S vacancies improve NO₃RR?

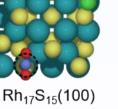

Pristine Rh_xS_y

 $Rh_2S_3(001)$


 Rh_xS_y with S Vacancy

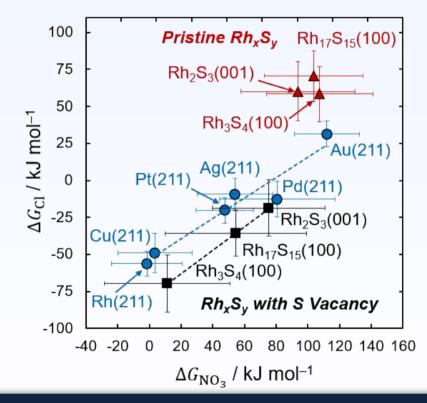

● = Rh, ● = S, ● = O, ● = N, ● = Cl

Top views of various Rh_xS_y surfaces



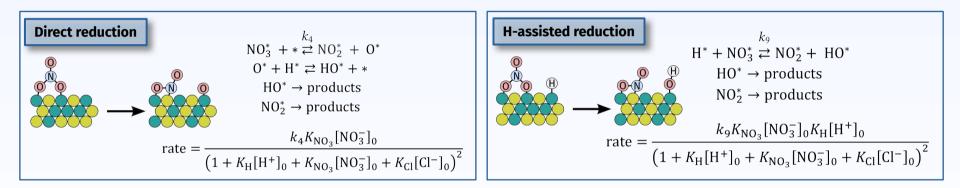
Rh₁₇S₁₅(100)

 $Rh_3S_4(100)$


() = S vacancy

[1] Singh, N. et al. Investigation of the Active Sites of Rhodium Sulfide for Hydrogen Evolution/Oxidation Using Carbon Monoxide as a Probe. Langmuir 30, 5662–5668 (2014).

How Do Adsorbates Bind to Different Rh_xS_y Facets?

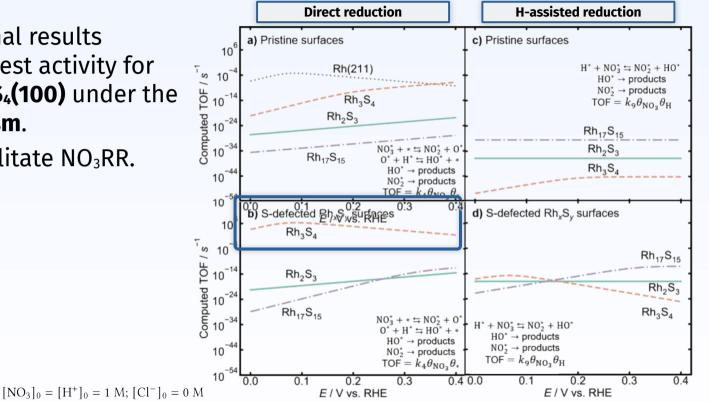

- Pure transition metals: blue line.
 Want Rh_xS_y to be above blue line.
- Pristine sulfide surfaces: red. Binds NO₃⁻ and Cl⁻ very weakly.
- S-defected Rh_xS_y: **black**. Follows same trend as transition metals.
- S-defected Rh₃S₄(100) should have fastest NO₃RR rate, but also be poisoned by Cl⁻.

Which Site is The Active Site? Which Mechanism is Happening?

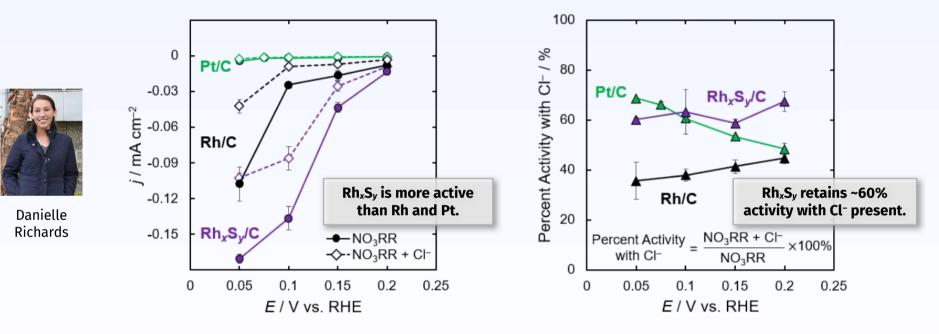
- Assume H⁺, Cl⁻, and NO₃⁻ compete to adsorb on Pt, Rh, and Rh_xS_y surfaces.
- NO₃RR can proceed through a direct^[1-2] or H-assisted mechanism.

 k_4, k_9 : rate constants

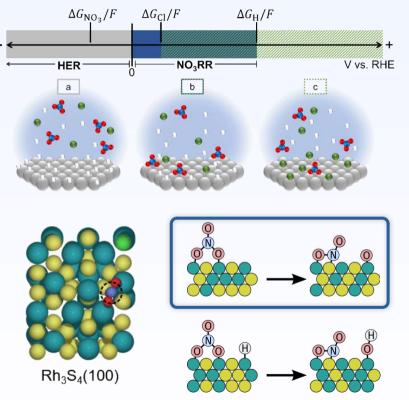
 $K_{\rm NO_3}, K_{\rm Cl}, K_{\rm H}$: equilibrium constants


 $[NO_3]_0, [H^+]_0, [Cl^-]_0$: initial molar concentrations

Pt undergoes H-assisted reduction, but exact mechanism is unknown for Rh and Rh_xS_y.

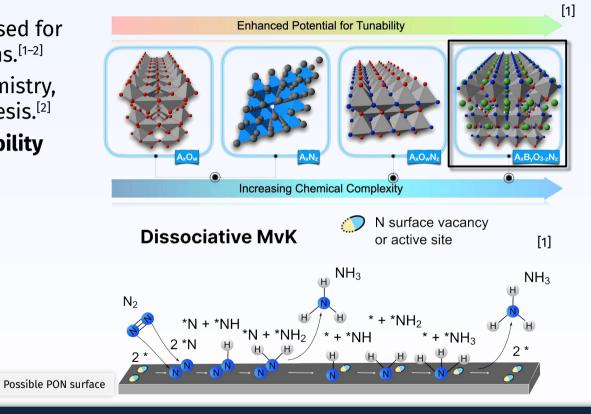

S-defected Rh₃S₄(100) is Predicted to be Most Active

- My computational results predict the highest activity for S-defected Rh₃S₄(100) under the direct mechanism.
- S vacancies facilitate NO₃RR.


Rh_xS_y Retains Activity in Presence of Chloride

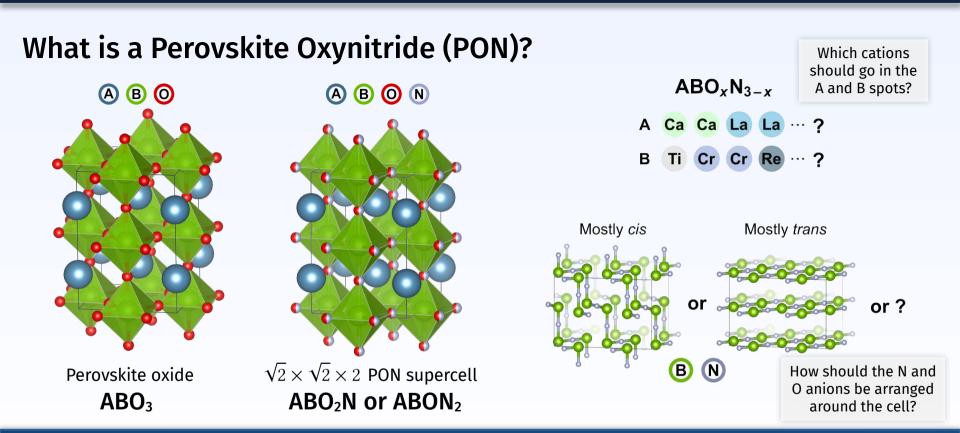
Rh_xS_y is Promising for Cl⁻-Resistant NO₃RR

- Rh_xS_y/C is active for NO₃RR and exhibits Cl⁻ poison resistance.
- We predict S-defected Rh₃S₄(100) to be the active site.
- Future experiments:
 - EPR spectroscopy.
 - Isotopic labeling.
 - Core-shell or nanoparticle engineering.


Perovskite Oxynitrides (PONs) for Ammonia Synthesis

Perovskite oxynitride crystals

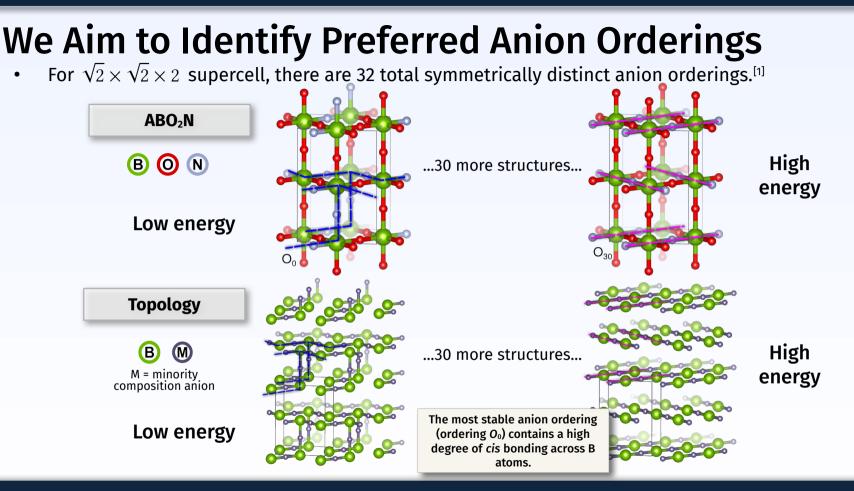
PONs Are Tunable Materials With Potential Use for N Chemistry


- Metal oxynitrides have been used for many electrochemical reactions.^[1-2]
- PONs may be useful for N chemistry, such as for efficient NH₃ synthesis.^[2]
- Which factors govern PON stability during N chemistry reactions?

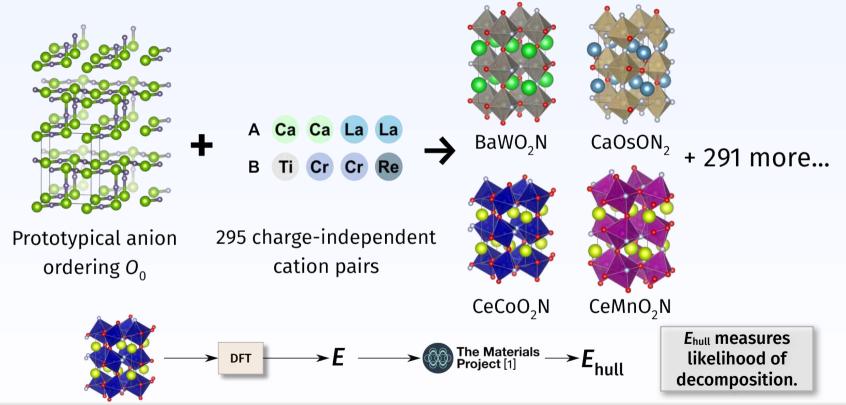
[1] Young, S. D.; Ceballos, B. M.; Banerjee, A.; Mukundan, R.; Pilania, G.; Goldsmith, B. R. Metal Oxynitrides for the Electrocatalytic Reduction of Nitrogen to Ammonia. J. Phys. Chem. C 2022, 126 (31), 12980–12993.

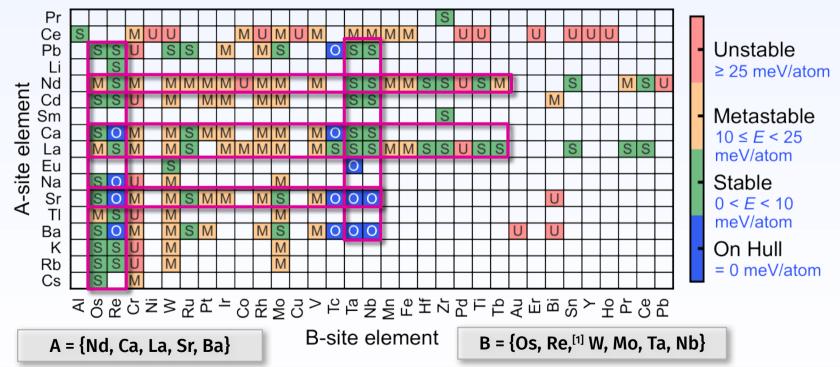
[2] Young, S. D.; Banerjee, A.; Pilania, G.; Goldsmith, B. R. Perovskite Oxynitrides as Tunable Materials for Electrocatalytic Nitrogen Reduction to Ammonia. Trends in Chemistry 2021, 3 (9), 694–696.
 [3] Wang, Z.; Richards, D.; Singh, N. Recent Discoveries in the Reaction Mechanism of Heterogeneous Electrocatalytic Nitrate Reduction. Catalysis Science & Technology 2021, 11 (3), 705–725.

The structure and composition of a PON strongly impacts its performance and stability.

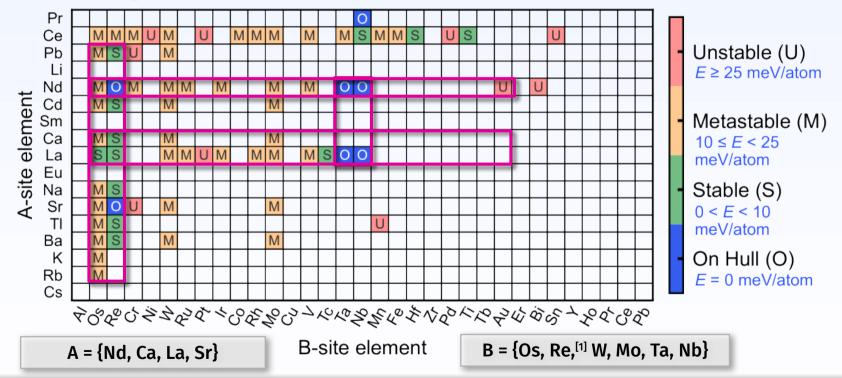

Fuertes, A. Chemistry and applications of oxynitride perovskites. J. Mater. Chem. 22, 3293–3299 (2012).
 Young, S. D.; Banerjee, A.; Pilania, G.; Goldsmith, B. R. Perovskite Oxynitrides as Tunable Materials for Electrocatalytic Nitrogen Reduction to Ammonia. Trends in Chemistry 2021, 3 (9), 694–696.

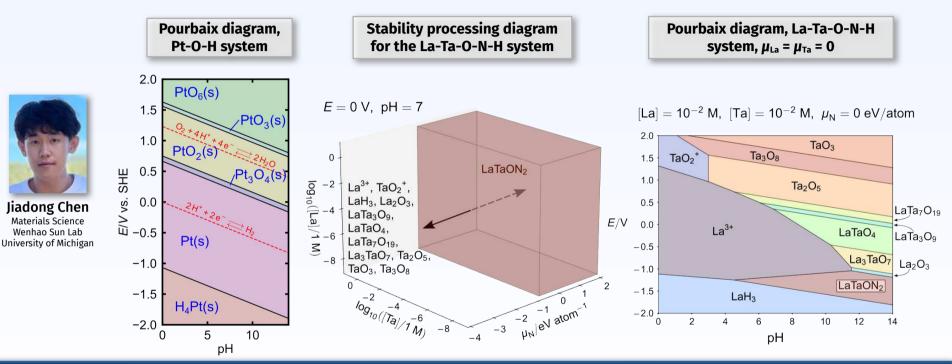
Goal: Determine Thermodynamic Stability and Anion Ordering In ABO₂N And ABON₂ Perovskite Oxynitrides


(a) Cation Pair	(b) Anion Ordering	(c) Energy-Above-Hull	(d) Electrochemical
Selection	Selection	Analysis	Stability Analysis
 Select elements from	 Enumerate distinct anion	 Pair 295 cation pairs with optimal anion ordering Calculate energies above hull using Materials Project 	 Construct multidimensional
periodic table Enumerate all permutations	orderings with selected		Pourbaix diagrams Identify regions of stability
of cations Filter based on geometric	cation pairs Evaluate relative energies of		and corresponding
factors	anion orderings		operating conditions
Tolerance Factor ABO ₂ N ABON ₂	Downselected ABO ₂ N and ABON ₂ compounds	bigg bigg	Hd Relative Stability


Combine Optimal Anion Ordering with Cation Pairs

We Identify 85 Stable PON Materials


ABO₂N


We Identify 85 Stable PON Materials

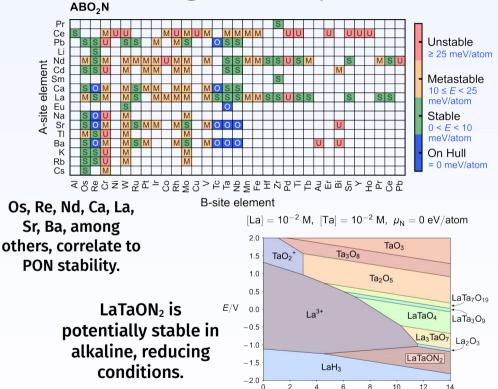
ABON₂

We Generate a Pourbaix Diagram for LaTaON₂

LaTaON₂ potentially synthesizable with N-rich precursors; stable in alkaline conditions.

Young, S.; Chen, J.; Sun, W.; Goldsmith, B.; Pilania, G. Thermodynamic Stability and Anion Ordering of Perovskite Oxynitrides. ACS Chemistry of Materials **2023**. DOI: 10.1021/acs.chemmater.3c00943.

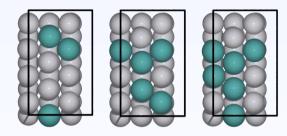
We Predict Many PONs That Are Waiting to be Synthesized



PONs are highly tunable in chemistry and ion ordering. The optimal anion ordering has a high degree of M–B–M *cis* bonding.

В

M


Ion-ordering-sensitive analysis could also be applied to complex perovskites, spinels, etc.

pН

Effective Electrocatalysts Can Help Balance the Global Nitrogen Cycle

Pt₃Ru₁ more active and cheaper than Pt for NO₃RR.^[1]

Tuning alloy composition enables higher catalyst activity. Analysis of alloys can exploit results from pure metal studies.

Rh_xS_v/C NO₃RR Activity CI- Poison Resistance NO NH۵ Rh₃S₄(100) with Sulfur Vacancv Rh sulfide more active, less

poisoned than Rh for NO₃RR.^[2]

As in other reactions, sulfur can help reduce halide poisoning. Surface vacancies may enable higher activity then on pure metals.

Cation chemistry correlates with stability; cis ordering is important.^[3]


Strategic searching in a combinatorial materials space can elucidate design guidelines without exhaustive calculations.

Computational chemistry aids experimentalists and accelerates discovery of new catalyst materials.

[1] Wang, Z.; Young, S. D.; Goldsmith, B. R.; Singh, N. Journal of Catalysis 2021, 395, 143–154. [2] Richards, D.; Young, S.; Goldsmith, B. R.; Singh, N. Catal. Sci. Technol. 2021, 11 (22), 7331-7346. [3] Young, S.; Chen, J.; Sun, W.; Goldsmith, B.; Pilania, G. ACS Chemistry of Materials 2023.

Acknowledgements

Rohini Bala Chandran Schwank

Brvan R. Goldsmith

Singh

Jin-Xun Liu Zixuan Wang

LOS Alamos Nersc

Danielle Richards

Extreme Science and Engineering **Discovery Environment**

Bianca Ceballos Materials Physics and Applications Los Alamos National Laboratory

Ranganchary Mukundan Materials Physics and Applications Los Alamos National Laboratory

Amitava Banerjee Metallurgical & Materials Engineering IIT-Jodhpur

Ghanshyam Pilania Materials Informatics General Electric Research

Wenhao Sun Materials Science University of Michigan

Jiadong Chen Materials Science University of Michigan

